Learn More
Technological progress in integrated, low-power, CMOS communication devices and sensors makes a rich design space of networked sensors viable. They can be deeply embedded in the physical world and spread throughout our environment like smart dust. The missing elements are an overall system architecture and a methodology for systematic advance. To this end,(More)
We propose <i>B-MAC</i>, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, <i>B-MAC</i> employs an adaptive preamble sampling scheme to reduce duty cycle and(More)
Accurate and scalable simulation has historically been a key enabling factor for systems research. We present TOSSIM, a simulator for TinyOS wireless sensor networks. By exploiting the sensor network domain and TinyOS's design, TOSSIM can capture network behavior at a high fidelity while scaling to thousands of nodes. By using a probabilistic bit error(More)
We present <i>nesC</i>, a programming language for networked embedded systems that represent a new design space for application developers. An example of a networked embedded system is a sensor network, which consists of (potentially) thousands of tiny, low-power "motes," each of which execute concurrent, reactive programs that must operate with severe(More)
We present <i>Telos</i>, an ultra low power wireless sensor module ("mote") for research and experimentation. Telos is the latest in a line of motes developed by UC Berkeley to enable wireless sensor network (WSN) research. It is a new mote design built from scratch based on experiences with previous mote generations. Telos' new design consists of three(More)
The dynamic and lossy nature of wireless communication poses major challenges to reliable, self-organizing multihop networks. These non-ideal characteristics are more problematic with the primitive, low-power radio transceivers found in sensor networks, and raise new issues that routing protocols must address. Link connectivity statistics should be captured(More)
A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding development of techniques that yield performance across a range of(More)
Composed of tens of thousands of tiny devices with very limited resources ("motes"), sensor networks are subject to novel systems problems and constraints. The large number of motes in a sensor network means that there will often be some failing nodes; networks must be easy to repopulate. Often there is no feasible method to recharge motes, so energy is a(More)
We study the problem of media access control in the novel regime of sensor networks, where unique application behavior and tight constraints in computation power, storage, energy resources, and radio technology have shaped this design space to be very different from that found in traditional mobile computing regime. Media access control in sensor networks(More)