Learn More
We propose <i>B-MAC</i>, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, <i>B-MAC</i> employs an adaptive preamble sampling scheme to reduce duty cycle and(More)
Accurate and scalable simulation has historically been a key enabling factor for systems research. We present TOSSIM, a simulator for TinyOS wireless sensor networks. By exploiting the sensor network domain and TinyOS's design, TOSSIM can capture network behavior at a high fidelity while scaling to thousands of nodes. By using a probabilistic bit error(More)
We present <i>Telos</i>, an ultra low power wireless sensor module ("mote") for research and experimentation. Telos is the latest in a line of motes developed by UC Berkeley to enable wireless sensor network (WSN) research. It is a new mote design built from scratch based on experiences with previous mote generations. Telos' new design consists of three(More)
PlanetLab is a global overlay network for developing and accessing broad-coverage network services. Our goal is to grow to 1000 geographically distributed nodes, connected by a disverse collection of links. PlanetLab allows multiple service to run concurrently and continuously, each in its own slice of PlanetLab. This paper discribes our initial(More)
To support network programming, we present Deluge, a reliable data dissemination protocol for propagating large data objects from one or more source nodes to many other nodes over a multihop, wireless sensor network. Deluge builds from prior work in density-aware, epidemic maintenance protocols. Using both a real-world deployment and simulation, we show(More)
This paper argues that a new class of geographically distributed network services is emerging, and that the most effective way to design, evaluate, and deploy these services is by using an overlay-based testbed. Unlike conventional network testbeds, however, we advocate an approach that supports both researchers that want to develop new services, and(More)
The dynamic and lossy nature of wireless communication poses major challenges to reliable, self-organizing multihop networks. These non-ideal characteristics are more problematic with the primitive, low-power radio transceivers found in sensor networks, and raise new issues that routing protocols must address. Link connectivity statistics should be captured(More)
We present <i>nesC</i>, a programming language for networked embedded systems that represent a new design space for application developers. An example of a networked embedded system is a sensor network, which consists of (potentially) thousands of tiny, low-power "motes," each of which execute concurrent, reactive programs that must operate with severe(More)
Technological progress in integrated, low-power, CMOS communication devices and sensors makes a rich design space of networked sensors viable. They can be deeply embedded in the physical world and spread throughout our environment like smart dust. The missing elements are an overall system architecture and a methodology for systematic advance. To this end,(More)