David D. Sampson

Learn More
BACKGROUND Measurements of upper airway size and shape are important in investigating the pathophysiology of obstructive sleep apnea (OSA) and in devising, applying, and determining the effectiveness of treatment modalities. We describe an endoscopic optical technique (anatomic optical coherence tomography, aOCT) that provides quantitative real-time imaging(More)
We propose a point-to-point or single-ended communications technique based on single-mode optical fibers that uses all-optical pulse multiplexing at the transmitter and coherent optical correlation at the receiver. This technique shows potential for application to secure untappable communications, fiber local-area networks, and optical ranging in the(More)
The ability to measure airway dimensions is important for clinicians, interventional bronchoscopists and researchers in order to accurately quantify structural abnormalities and track their changes over time or in response to treatment. Most quantitative airway measurements are based on X-ray computed tomography and, more recently, on multidetector computed(More)
We report a new synthetic aperture optical microscopy in which high-resolution, wide-field amplitude and phase images are synthesized from a set of Fourier holograms. Each hologram records a region of the complex two-dimensional spatial frequency spectrum of an object, determined by the illumination field's spatial and spectral properties and the collection(More)
We propose and demonstrate a novel detection technique, based on a modified electronic phase-locked loop, for Doppler optical coherence tomography. The technique permits real-time simultaneous reflectivity and continuous, bidirectional velocity mapping in turbid media over a wide velocity range with minimal sensitivity penalty compared with conventional(More)
This paper presents results of in vivo studies on the effect of refractive index-matching media on image artifacts in optical coherence tomography (OCT) images of human skin. These artifacts present as streaks of artificially low backscatter and displacement or distortion of features. They are primarily caused by refraction and scattering of the OCT light(More)
This study compared shape, size and length of the pharyngeal airway in individuals with and without obstructive sleep apnoea (OSA) using a novel endoscopic imaging technique, anatomical optical coherence tomography (aOCT). The study population comprised a preliminary study group of 20 OSA patients and a subsequent controlled study group of 10 OSA patients(More)
We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line(More)
RATIONALE Our understanding of how airway remodeling affects regional airway elastic properties is limited due to technical difficulties in quantitatively measuring dynamic, in vivo airway dimensions. Such knowledge could help elucidate mechanisms of excessive airway narrowing. OBJECTIVES To use anatomical optical coherence tomography (aOCT) to compare(More)
We utilize synthetic-aperture Fourier holographic microscopy to resolve micrometer-scale microstructure over millimeter-scale fields of view. Multiple holograms are recorded, each registering a different, limited region of the sample object's Fourier spectrum. They are "stitched together" to generate the synthetic aperture. A low-numerical-aperture (NA)(More)