Learn More
We present optical palpation, a tactile imaging technique for mapping micrometer- to millimeter-scale mechanical variations in soft tissue. In optical palpation, a stress sensor consisting of translucent, compliant silicone with known stress-strain behavior is placed on the tissue surface and a compressive load is applied. Optical coherence tomography (OCT)(More)
Repetitive closure of the upper airway characterizes obstructive sleep apnea. It disrupts sleep causing excessive daytime drowsiness and is linked to hypertension and cardiovascular disease. Previous studies simulating the underlying fluid mechanics are based upon geometries, time-averaged over the respiratory cycle, obtained usually via MRI or CT scans.(More)
We present the first three-dimensional (3D) data sets recorded using optical coherence elastography (OCE). Uni-axial strain rate was measured on human skin in vivo using a spectral-domain optical coherence tomography (OCT) system providing >450 times higher line rate than previously reported for in vivo OCE imaging. Mechanical excitation was applied at a(More)
We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling(More)
We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We(More)
We present a novel needle-based device for the measurement of refractive index and scattering using low-coherence interferometry. Coupled to the sample arm of an optical coherence tomography system, the device detects the scattering response of, and optical path length through, a sample residing in a fixed-width channel. We report use of the device to make(More)
We review the development of phantoms for optical coherence tomography (OCT) designed to replicate the optical, mechanical and structural properties of a range of tissues. Such phantoms are a key requirement for the continued development of OCT techniques and applications. We focus on phantoms based on silicone, fibrin and poly(vinyl alcohol) cryogels(More)
Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue(More)
We report the use of optical coherence tomography (OCT) to determine spatially localized optical attenuation coefficients of human axillary lymph nodes and their use to generate parametric images of lymphoid tissue. 3D-OCT images were obtained from excised lymph nodes and optical attenuation coefficients were extracted assuming a single scattering model of(More)
In this paper, we report on anatomical optical coherence tomography, a catheter-based optical modality designed to provide quantitative sectional images of internal hollow organ anatomy over extended observational periods. We consider the design and performance of an instrument and its initial intended application in the human upper airway for the(More)