David D. O’Keefe

Learn More
Homeobox transcription-factor codes control motor-neuron subtype identity and dorsal versus ventral axon guidance in both vertebrate and invertebrate nervous systems; however, the specific axon guidance-receptors that are regulated by these transcription factors to control pathfinding are poorly defined. In Drosophila, the Even-skipped (Eve) transcription(More)
The plant hormone group, the cytokinins, regulates many stages of plant growth and development. Regulation includes that of cell division and enhancement of sink strength, both of which are important processes in seed development and embryonic growth. Two gene families play a key role in maintaining cytokinin homeostasis: isopentenyl transferase (IPT),(More)
To identify novel regulators of nervous system development, we used the GAL4-UAS misexpression system in Drosophila to screen for genes that influence axon guidance in developing embryos. We mobilized the Gene Search (GS) P element and identified 42 lines with insertions in unique loci, including leak/roundabout2, which encodes an axon guidance receptor and(More)
Signaling through the Notch receptor has dramatically different effects depending on cell type and developmental timing. While a myriad of biological systems affected by Notch have been described, the molecular mechanisms by which a generic Notch signal is translated into a cell-type-specific output are less clear. Canonically, the Notch intracellular(More)
The transformation of a developing epithelium into an adult structure is a complex process, which often involves coordinated changes in cell proliferation, metabolism, adhesion, and shape. To identify genetic mechanisms that control epithelial differentiation, we analyzed the temporal patterns of gene expression during metamorphosis of the Drosophila wing.(More)
  • 1