Learn More
We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome.(More)
Automatic recognition of biomedical names is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. In recent years, various solutions have been implemented to tackle this problem. However, limitations regarding system characteristics, customization and usability still hinder their wider application(More)
BACKGROUND We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation(More)
The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of(More)
Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for the biomedical domain and normally require the integration of complex(More)
In this paper we present a biomedical event extraction system for the BioNLP 2013 event extraction task. Our system consists of two phases. In the learning phase, a dictionary and patterns are generated automatically from annotated events. In the extraction phase, the dictionary and obtained patterns are applied to extract events from input text. When(More)
With the overwhelming amount of biomedical textual information being produced, several manual curation efforts have been set up to extract and store concepts and their relationships into structured resources. As manual annotation is a demanding and expensive task, computerized solutions were developed to perform such tasks automatically. However, high-end(More)
SUMMARY The continuous growth of the biomedical scientific literature has been motivating the development of text-mining tools able to efficiently process all this information. Although numerous domain-specific solutions are available, there is no web-based concept-recognition system that combines the ability to select multiple concept types to annotate, to(More)
MOTIVATION The recognition of named entities (NER) is an elementary task in biomedical text mining. A number of NER solutions have been proposed in recent years, taking advantage of available annotated corpora, terminological resources and machine-learning techniques. Currently, the best performing solutions combine the outputs from selected annotation(More)
BACKGROUND The recognition of drugs and chemical entities in text is a very important task within the field of biomedical information extraction, given the rapid growth in the amount of published texts (scientific papers, patents, patient records) and the relevance of these and other related concepts. If done effectively, this could allow exploiting such(More)