Learn More
Kinetoplast DNA is a network of interlocked minicircles and maxicircles. In situ hybridization, using probes detected by digital fluorescence microscopy, has clarified the in vivo structure and replication mechanism of the network. The probe recognizes only nicked minicircles. Hybridization reveals prereplication kinetoplasts (with closed minicircles),(More)
Cosmid clones containing human DNA inserts have been mapped on chromosome 11 by fluorescence in situ hybridization under conditions that suppress signal from repetitive DNA sequences. Thirteen known genes, one chromosome 11-specific DNA repeat, and 36 random clones were analyzed. High-resolution mapping was facilitated by using digital imaging microscopy(More)
The chicken muscle tissue culture system has been used for visualizing actin gene expression after in situ hybridization. Cell differentiation is morphologically distinguishable in this system as the myoblasts fuse into myotubes. This differentiation involves the production of large amounts of actin required for myofibrils. The presence of actin mRNA has(More)
Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been reported to differ structurally and functionally from enterobacterial LPS. These studies demonstrate that in contrast to protein-free enterobacterial LPS, a similarly purified preparation of P. gingivalis LPS exhibited potent Toll-like receptor 2 (TLR2), rather(More)
The organization of eight small nuclear ribonucleoproteins (the U1, U2, U4, U5, and U6 RNAs previously studied by others and three additional snRNAs, U11, U12, and 7SK) has been investigated in cultured human cells by fluorescence in situ hybridization with antisense DNA and 2'-O-Me RNA oligonucleotides. Using highly sensitive digital imaging microscopy we(More)
A polyclonal antiserum directed against the C-terminal domain of dystrophin was used to isolate a cDNA clone encoding an antigenically cross-reactive protein, microtubule-associated protein 1B (MAP-1B). Physical mapping of the human MAP-1B locus places its chromosomal location at 5q13, in proximity to the spinal muscular atrophy (SMA) locus. SMA is a(More)
The mammalian Rad51 protein is involved in homologous recombination and in DNA damage repair. Its nuclear distribution after DNA damage is highly dynamic, and distinct foci of Rad51 protein, distributed throughout the nuclear volume, are induced within a few hours after gamma irradiation; these foci then coalesce into larger clusters. Rad51-positive cells(More)
Kinetoplast DNA, the mitochondrial DNA of trypanosomatid parasites, is a network containing several thousand minicircles and a few dozen maxicircles. We compared kinetoplast DNA replication in Trypanosoma brucei and Crithidia fasciculata using fluorescence in situ hybridization and electron microscopy of isolated networks. One difference is in the location(More)
Over ten different mammalian genes related to the Drosophila Shaker gene (the Sh gene family) have been identified recently. These genes encode subunits of voltage-dependent K+ channels. The family consists of four subfamilies: ShI genes are homologues of Shaker; ShII, ShIII, and ShIV are homologues of three other Shaker-like genes in Drosophila, Shab,(More)
TEL is a new member of the ETS family of transcription factors which is rearranged in a number of hematologic malignancies with translocations involving chromosome band 12p13. In some cases, both TEL alleles are affected, resulting in loss of wild-type TEL function in the leukemic cells. In addition, 5% of children with acute lymphoblastic leukemia (ALL)(More)