David C. Timpert

Learn More
Apraxia typically results from left-hemispheric (LH), but also from right-hemispheric (RH) stroke, and often impairs gesture imitation. Especially in LH stroke, it is important to differentiate apraxia-induced gesture imitation deficits from those due to co-morbid aphasia and associated semantic deficits, possibly influencing the imitation of meaningful(More)
Theories of lateralized cognitive functions propose a dominance of the left hemisphere for motor control and of the right hemisphere for spatial attention. Accordingly, spatial attention deficits (e.g., neglect) are more frequently observed after right-hemispheric stroke, whereas apraxia is a common consequence of left-hemispheric stroke. Clinical reports(More)
The Simon effect shows that choice reactions are faster if the location of the stimulus and the response correspond, even when stimulus location is task-irrelevant. The Simon effect raises the question of what factors influence spatial coding. Until now, the effects of handedness, responding hand, and visual field were addressed in separate studies that(More)
During rehabilitation after stroke motor sequence learning is of particular importance because considerable effort is devoted to (re)acquiring lost motor skills. Previous studies suggest that implicit motor sequence learning is preserved in stroke patients but were restricted to the spatial dimension, although the timing of single action components is as(More)
  • 1