Learn More
In many species, including humans, exposure to high image velocities induces motion adaptation, but the neural mechanisms are unclear. We have isolated two mechanisms that act on directionally selective motion-sensitive neurons in the fly's visual system. Both are driven strongly by movement and weakly, if at all, by flicker. The first mechanism, a(More)
A hot head gives an insect a clearer view of a moving world because warming reduces motion blur by accelerating photoreceptor responses. Over a natural temperature range, 19-34 degrees C, the speed of response of blowfly (Calliphora vicina) photoreceptors more than doubles, to produce the fastest functional responses recorded from an ocular photoreceptor.(More)
Although a great deal of experimental evidence supports the notion of a Reichardt correlator as a mechanism for biological motion detection, the correlator does not signal true image velocity. This study examines the accuracy with which realistic Reichardt correlators can provide velocity estimates in an organism's natural visual environment. The(More)
To detect motion, primates, birds and insects all use local detectors to correlate signals sampled at one location in the image with those sampled after a delay at adjacent locations. These detectors can adapt to high image velocities by shortening the delay. To investigate whether they use long delays for detecting low velocities, we compared(More)
Eyes of the hoverfly Eristalis tenax are sexually dimorphic such that males have a fronto-dorsal region of large facets. In contrast to other large flies in which large facets are associated with a decreased interommatidial angle to form a dorsal "acute zone" of increased spatial resolution, we show that a dorsal region of large facets in males appears to(More)
The tangential neurons in the lobula plate region of the flies are known to respond to visual motion across broad receptive fields in visual space. When intracellular recordings are made from tangential neurons while the intact animal is stimulated visually with moving natural imagery,we find that neural response depends upon speed of motion but is nearly(More)
As a consequence of the non-linear correlation mechanism underlying motion detection, the variability in local pattern structure and contrast inherent within natural scenes profoundly influences local motion responses. To accurately interpret optic flow induced by self-motion, neurons in many dipteran flies smooth this "pattern noise" by wide-field spatial(More)
How do animals regulate self-movement despite large variation in the luminance contrast of the environment? Insects are capable of regulating flight speed based on the velocity of image motion, but the mechanisms for this are unclear. The Hassenstein-Reichardt correlator model and elaborations can accurately predict responses of motion detecting neurons(More)
Many insects perform high-speed aerial maneuvers in which they navigate through visually complex surrounds. Among insects, hoverflies stand out, with males switching from stationary hovering to high-speed pursuit at extreme angular velocities [1]. In dipterans, 50-60 large interneurons -- the lobula-plate tangential cells (LPTCs) -- detect changes in optic(More)
Estimating relative velocity in the natural environment is challenging because natural scenes vary greatly in contrast and spatial structure. Widely accepted correlation-based models for elementary motion detectors (EMDs) are sensitive to contrast and spatial structure and consequently generate ambiguous estimates of velocity. Identified neurons in the(More)