David C. O'Carroll

Learn More
Eyes of the hoverfly Eristalis tenax are sexually dimorphic such that males have a fronto-dorsal region of large facets. In contrast to other large flies in which large facets are associated with a decreased interommatidial angle to form a dorsal "acute zone" of increased spatial resolution, we show that a dorsal region of large facets in males appears to(More)
As a consequence of the non-linear correlation mechanism underlying motion detection, the variability in local pattern structure and contrast inherent within natural scenes profoundly influences local motion responses. To accurately interpret optic flow induced by self-motion, neurons in many dipteran flies smooth this "pattern noise" by wide-field spatial(More)
The tangential neurons in the lobula plate region of the flies are known to respond to visual motion across broad receptive fields in visual space. When intracellular recordings are made from tangential neurons while the intact animal is stimulated visually with moving natural imagery,we find that neural response depends upon speed of motion but is nearly(More)
Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the(More)
Many insects perform high-speed aerial maneuvers in which they navigate through visually complex surrounds. Among insects, hoverflies stand out, with males switching from stationary hovering to high-speed pursuit at extreme angular velocities [1]. In dipterans, 50-60 large interneurons -- the lobula-plate tangential cells (LPTCs) -- detect changes in optic(More)
Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been(More)
In many species, including humans, exposure to high image velocities induces motion adaptation, but the neural mechanisms are unclear. We have isolated two mechanisms that act on directionally selective motion-sensitive neurons in the fly's visual system. Both are driven strongly by movement and weakly, if at all, by flicker. The first mechanism, a(More)
How do animals regulate self-movement despite large variation in the luminance contrast of the environment? Insects are capable of regulating flight speed based on the velocity of image motion, but the mechanisms for this are unclear. The Hassenstein-Reichardt correlator model and elaborations can accurately predict responses of motion detecting neurons(More)
Discerning a target amongst visual 'clutter' is a complicated task that has been elegantly solved by flying insects, as evidenced by their mid-air interactions with conspecifics and prey. The neurophysiology of small-target motion detectors (STMDs) underlying these complex behaviors has recently been described and suggests that insects use mechanisms(More)
We present a computational model for target discrimination based on intracellular recordings from neurons in the fly visual system. Determining how insects detect and track small moving features, often against cluttered moving backgrounds, is an intriguing challenge, both from a physiological and a computational perspective. Previous research has(More)