Learn More
Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions(More)
[1] Global measurements of the 500–825 hPa layer mean HDO/H 2 O ratio from the Tropospheric Emission Spectrometer (TES) are used to expose differences in the dominant hydrologic processes in the Amazon, north Australian, and Asian monsoon regions. The data show high regional isotopic variability and numerous values unexpected from classical Rayleigh theory.(More)
[1] We use the GEOS-Chem chemical transport model to interpret observations of tropospheric ozone from the Tropospheric Emission Spectrometer (TES) satellite instrument in summer 2005. Observations from TES reveal elevated ozone in the middle troposphere (500–400 hPa) across North Africa and the Middle East. Observed ozone abundances in the middle(More)
The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional(More)
Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fl uctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state(More)
[1] Climate models suggest an important role for land-atmosphere feedbacks on climate, but exhibit a large dispersion in the simulation of this role. We focus here on the role of continental recycling in the intraseasonal variability of continental moisture, and we explore the possibility of using water isotopic measurements to observationally constrain(More)
[1] We present global, vertical profile estimates of the HDO/H 2 O ratio from the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite. We emphasize in this paper the estimation approach and error characterization, which are critical to determining the very small absolute concentration of HDO relative to H 2 O and its(More)
[1] The goal of this paper is to investigate the added value of water isotopic measurements to estimate the relative influence of large‐scale dynamics, convection, and land surface recycling on the Sahelian water budget. To this aim, we use isotope data in the lower tropospheric water vapor measured by the SCIAMACHY and TES satellite instruments and in situ(More)
[1] The subtropical convective boundary layer (CBL) plays a critical role in climate by regulating the vertical exchange of moisture, energy, trace gases, and pollutants between the ocean surface and free troposphere. Yet bulk features of this exchange are poorly constrained in climate models. To improve our understanding of moisture transport between the(More)
The EOS (Earth Observing System) Aura Tro-pospheric Emission Spectrometer (TES) retrieves the atmospheric HDO / H 2 O ratio in the mid-to-lower troposphere as well as the planetary boundary layer. TES observations of water vapor and the HDO isotopologue have been compared with nearly coincident in situ airborne measurements for direct validation of the TES(More)