David C. Jangraw

Learn More
While numerous studies have explored the mechanisms of reward-based decisions (the choice of action based on expected gain), few have asked how reward influences attention (the selection of information relevant for a decision). Here we show that a powerful determinant of attentional priority is the association between a stimulus and an appetitive reward. A(More)
We describe a closed-loop brain-computer interface that re-ranks an image database by iterating between user generated 'interest' scores and computer vision generated visual similarity measures. The interest scores are based on decoding the electroencephalographic (EEG) correlates of target detection, attentional shifts and self-monitoring processes, which(More)
OBJECTIVE As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid(More)
Novelty modulates sensory and reward processes, but it remains unknown how these effects interact, i.e., how the visual effects of novelty are related to its motivational effects. A widespread hypothesis, based on findings that novelty activates reward-related structures, is that all the effects of novelty are explained in terms of reward. According to this(More)
Our group has been investigating the development of BCI systems for improving information delivery to a user, specifically systems for triaging image content based on what captures a user's attention. One of the systems we have developed uses single-trial EEG scores as noisy labels for a computer vision image retrieval system. In this paper we investigate(More)
BACKGROUND As neuroscientists endeavor to understand the brain's response to ecologically valid scenarios, many are leaving behind hyper-controlled paradigms in favor of more realistic ones. This movement has made the use of 3D rendering software an increasingly compelling option. However, mastering such software and scripting rigorous experiments requires(More)
Multi-echo fMRI, particularly the multi-echo independent component analysis (ME-ICA) algorithm, has previously proven useful for increasing the sensitivity and reducing false positives for functional MRI (fMRI) based resting state connectivity studies. Less is known about its efficacy for task-based fMRI, especially at the single subject level. This work,(More)
Unlike traditional brain-computer interfaces that use brain signals for direct control of computers and robotics, a cortically coupled computer system opportunistically senses the brain state, capturing a user's implicit or explicit computation, and then communicates this information to a traditional computer system via a neural interface.