David C. Bencic

Learn More
The measurement of vitellogenin (vtg) gene transcription has been shown to be a reliable indicator of exposure to estrogenic compounds. Unfortunately, the relatively poor molecular characterization of North American fish species has hindered its application to a larger number of ecologically important species. The current research aimed to demonstrate(More)
BACKGROUND Several chemicals in the environment have the potential to inhibit aromatase, an enzyme critical to estrogen synthesis. OBJECTIVES The objective of this study was to provide a detailed characterization of molecular and biochemical responses of female fathead minnows to a model aromatase inhibitor, fadrozole (FAD). METHODS Fish were exposed(More)
Knowledge of possible toxic mechanisms (or modes) of action (MOA) of chemicals can provide valuable insights as to appropriate methods for assessing exposure and effects, thereby reducing uncertainties related to extrapolation across species, endpoints and chemical structure. However, MOA-based testing seldom has been used for assessing the ecological risk(More)
Ecological risk assessors have a growing need for sensitive and rapid indicators of environmental exposures in aquatic ecosystems resulting from natural and synthetic estrogen-like compounds. Investigators developing subcellular exposure markers in traditional sentinel organisms must be vigilant about inherent variability of analyses, especially regarding(More)
Endocrine-disrupting chemicals can affect reproduction and development in humans and wildlife. We developed a computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (DRTC) behaviors for endocrine effects of the aromatase inhibitor, fadrozole (FAD). The model describes adaptive(More)
As part of a research effort examining system-wide responses of the hypothalamic-pituitary-gonadal (HPG) axis in fish to endocrine-active chemicals (EACs) with different modes of action, zebrafish (Danio rerio) were exposed to 25 or 100 microg/L of the aromatase inhibitor fadrozole for 24, 48, or 96 h. Global transcriptional response in brain and ovarian(More)
Medaka fish are an established non-mammalian research model for the study of liver carcinogenesis and exposure to environmental pollutants. Studies have emphasized the development of hepatic neoplasms in medaka following exposure to model carcinogens. To date however, little information is known regarding the mechanisms underlying initiation of hepatic(More)
This study sought to construct a transcriptomics-based framework of signal transduction pathways, transcriptional regulatory networks, and the hypothalamic-pituitary gonadal (HPG) axis in zebrafish (Danio rerio) to facilitate formulation of specific, testable hypotheses regarding the mechanisms of endocrine disruption in fish. For the analyses involved, we(More)
Aromatase, a member of the cytochrome P450 superfamily, is a key enzyme in estradiol synthesis that catalyzes the aromatization of androgens into estrogens in ovaries. Here, we used an integrated approach to assess the mechanistic basis of the direct effects of aromatase inhibition, as well as adaptation and recovery processes in fish. We exposed female(More)
The vertebrate hypothalamic-pituitary-gonadal (HPG) axis is controlled through various feedback mechanisms that maintain a dynamic homeostasis in the face of changing environmental conditions, including exposure to chemicals. We assessed the effects of prochloraz on HPG axis function in adult fathead minnows (Pimephales promelas) at multiple sampling times(More)