Learn More
From measurements of nerve excitability and the changes in excitability produced by nerve impulses and conditioning currents, it is possible to infer information about the membrane potential and biophysical properties of peripheral axons. Such information cannot be obtained from conventional nerve conduction studies. This article describes a new method that(More)
Conventional electrophysiological tests of nerve function focus on the number of conducting fibers and their conduction velocity. These tests are sensitive to the integrity of the myelin sheath, but provide little information about the axonal membrane. Threshold tracking techniques, in contrast, test nerve excitability, which depends on the membrane(More)
1. To identify the vestibular contribution to human standing, responses in leg muscles evoked by galvanic vestibular stimulation were studied. Step impulses of current were applied between the mastoid processes of normal subjects and the effects on the soleus and tibialis anterior electromyograms (EMGs), ankle torque, and body sway were identified by(More)
The strength-duration time constant (tau SD) is a property of nodal membrane and, while it depends on a number of factors, its measurement may shed light on axonal properties when taken in conjunction with measurements of axonal excitability. For example, tau SD increases with demyelination as the exposed membrane is enlarged by inclusion of paranodal and(More)
1. An human subjects, vibration of amplitude 1-5 mm and frequency 20-220 Hz was applied to the tendons of muscles in the leg to examine the effects on the discharge of primary and secondary endings during manoeuvres designed to alter the level of fusimotor drive. 2. In four experiments, the peroneal nerve was completely blocked with lidocaine proximal to(More)
The excitability of human axons can be studied reliably using the technique of threshold tracking, which allows the strength of a test stimulus to be adjusted by computer to activate a defined fraction of the maximal nerve or muscle action potential. The stimulus current that just evokes the target response is considered the "threshold" for that response.(More)
1. In this study we measured the loop gain of postural reflexes in standing human subjects. Reflex activity is conventionally described in terms of the muscle activation arising from a perturbation, but in this study the ability of the evoked muscle activity to correct the perturbation was also measured, and the behavior of the entire feedback loop is(More)
1. In micro-electrode recordings from the human peroneal and tibial nerves, the responses of thirty-two primary spindle endings, thirteen secondary spindle endings and three Golgi tendon organs were studied during vibration of the tendons of the receptor-bearing muscles in the leg. The amplitude of the applied vibration was 1-5 mm and the frequency was(More)
When electrical stimulation is applied over human muscle, the evoked force is generally considered to be of peripheral origin. However, in relaxed humans, stimulation (1 msec pulses, 100 Hz) over the muscles that plantarflex the ankle produced more than five times more force than could be accounted for by peripheral properties. This additional force was(More)
1. The responses of forty-one muscle spindle endings, mostly in tibialis anterior, were studied in human subjects during voluntary movements of the ankle joint performed at various speeds against different external loads. 2. During slow shortening contractions, the discharge rates of spindle endings in the contracting muscle accelerated after the appearance(More)