Learn More
Early in development, the behavior of neuroepithelial cells is controlled by several factors, which act in a developmentally regulated manner. Diffusible factors are secreted locally by the neuroepithelium itself, although other nearby structures may also be involved. Evidence suggests a physiological role for the cerebrospinal fluid in the development of(More)
During development, embryonic cerebrospinal fluid(E-CSF) is involved in cell survival, proliferation, and neurogenesis of the neuroepithelial progenitor cells. We have recently identified a complex pattern of proteins in chick and rat E-CSF, which include apolipoproteins. Apolipoproteins play a critical role in the function of lipoproteins by interacting(More)
Embryonic cerebrospinal fluid (E-CSF) is involved in the regulation of survival, proliferation and neurogenesis of neuroectodermal progenitor cells, as well as in the control of mesencephalic gene expression in collaboration with the isthmic organizer. Recently, we showed the presence of retinol-binding protein (RBP) within the E-CSF proteome. RBP is an(More)
 The special morphological features of freshwater planarians make them an attractive and informative model for studying the processes of regeneration and pattern formation. In this work, we investigate pattern formation and maturation of the planarian pharynx during regeneration in tail fragments. Using three monoclonal antibodies (TCAV-1, TF-26 and(More)
 To obtain specific immunological probes for studying molecular mechanisms involved in cell renewal, cell differentiation, and pattern formation in intact and regenerating planarians, we have produced a hybridoma library specific for the asexual race of the freshwater planarian Dugesia (Girardia) tigrina. Among the 276 monoclonal antibodies showing tissue-,(More)
During early stages of brain development, neuroepithelial stem cells undergo intense proliferation as neurogenesis begins. Fibroblast growth factor 2 (FGF2) has been involved in the regulation of these processes, and although it has been suggested that they work in an autocrine-paracrine mode, there is no general agreement on this because the behavior of(More)
During early stages of embryo development, the brain cavity is filled with Embryonic Cerebro-Spinal Fluid, which has an essential role in the survival, proliferation and neurogenesis of the neuroectodermal stem cells. We identified and analyzed the proteome of Embryonic Cerebro-Spinal Fluid from rat embryos (Rattus norvegicus), which includes proteins(More)
During early stages of embryo development, the brain cavity is filled with embryonic cerebrospinal fluid (E-CSF), a complex fluid containing different protein fractions that contributes to the regulation of the survival, proliferation and neurogenesis of the neuroectodermal stem cells. Using 2-DE, protein sequencing and database searches, we identified and(More)
We have isolated a monoclonal antibody, TCEN49, that displays position-specific binding to the central body region of the planarian Dugesia (Girardia) tigrina. TCEN49 binds to all cell types of the central area with the exception of epithelial cells. Labeled cells are more related by position than by lineage. In the intact organism, boundaries between(More)
Early in development, the behavior of neuroepithelial cells is controlled by several factors acting in a developmentally regulated manner. Recently it has been shown that diffusible factors contained within embryonic cerebrospinal fluid (CSF) promote neuroepithelial cell survival, proliferation, and neurogenesis in mesencephalic explants lacking any known(More)