Learn More
Modelica is a modern, strongly typed, declarative, and object-oriented language for modeling and simulation of complex systems. This paper gives a quick overview of some aspects of the OpenModelica environment – an open-source environment for modeling, simulation, and development of Modelica applications. An introduction of the objectives of the environment(More)
We contend that repeatability of execution times is crucial to the validity of testing of real-time systems. However, computer architecture designs fail to deliver repeatable timing, a consequence of aggressive techniques that improve average-case performance. This paper introduces the Precision-Timed ARM (PTARM), a precision-timed (PRET) microarchitecture(More)
Mixed-criticality systems, in which multiple tasks of varying criticality execute on a single hardware platform, are an emerging research area in real-time embedded systems. High-criticality tasks require spatial and temporal isolation guarantees for independent verification, and the task set should efficiently utilize hardware resources. Hardware-based(More)
In this paper, we explain how to achieve deterministic execution of FMUs (Functional Mockup Units) under the FMI (Functional Mockup Interface) standard. In particular, we focus on co-simulation, where an FMU either contains its own internal simulation algorithm or serves as a gateway to a simulation tool. We give conditions on the design of FMUs and master(More)
Synchronous languages are widely used to design safety-critical embedded systems. These languages are based on the synchrony hypothesis, asserting that all tasks must complete instantaneously at each logical time step. This assertion is, however, unsuitable for the design of mixed-criticality systems, where some tasks can tolerate missed deadlines. This(More)
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to(More)
Modelica is a modern, strongly typed, declarative, and object-oriented language for modeling and simulation of complex systems. This paper gives a quick overview of some aspects of the OpenModelica environment - an open-source environment for modeling, simulation, and development of Modelica applications. An introduction of the objectives of the environment(More)
Cyber-physical systems (CPS) are becoming indispensable in our modern way of life. As an application domain CPS is not new. As an intellectual discipline, however, it is. This paper focuses on CPS modeling, which is an essential activity in CPS design, with multiple challenges. In particular, stakeholders lack a systematic framework and guidelines to help(More)
Computer aided modeling and simulation of complex physical systems, using components from multiple application domains, such as electrical, mechanical, and hydraulic, have in recent years witnessed a significant growth of interest. In the last decade, equation-based object-oriented (EOO) modeling languages, (e.g. Modelica, gPROMS, and VHDL-AMS) based on(More)