Learn More
Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to(More)
UNLABELLED There has been considerable debate about the desirability of attenuation correction in whole-body PET oncology imaging. The advantages of attenuation correction are quantitative accuracy, whereas the perceived disadvantages are loss of contrast, noise amplification, and increased scanning time. In this work, we explain contrast changes between(More)
Physical inactivity during space flight or prolonged bed rest causes rapid and marked loss of bone mass in humans. Resveratrol, a red wine polyphenol that is currently under study for its therapeutic antioxidant properties, has been shown to significantly modulate biomarkers of bone metabolism, i.e., to promote osteoblast differentiation and to prevent bone(More)
UNLABELLED With the advantages of the increased sensitivity of fully 3-dimensional (3D) PET for whole-body imaging come the challenges of more complicated quantitative corrections and, in particular, an increase in the number of random coincidences. The most common method of correcting for random coincidences is the real-time subtraction of a delayed(More)
Human clear cell renal cell carcinoma (CCC) remains resistant to treatments despite the progress in targeted therapies. Several signaling pathways acting during renal development are reactivated during kidney tumorigenesis; this is the case of the sonic hedgehog (SHH)-Gli. Interestingly, the precursor of active vitamin D3 (VD3), cholecalciferol, has been(More)
Proton CT nowadays aims at improving hadron therapy treatment planning by mapping the stopping power of materials. In order to optimize a spatial resolution of the reconstructed images, the most likely path (MLP) of each proton can be computed. We investigated the errors in the computation of this path due to the configuration of the system, i.e. the(More)
This study evaluated the in vivo antitumor activity of grape-derived polyphenols. BALB/c mice were subcutaneously implanted with C26 colon carcinoma cells, and 2 d later they received either solvent or red wine polyphenols (RWPs) (100 mg/kg/d, human equivalent dose approximately 500 mg/d) in the drinking water for 25 d. Wistar rats received either solvent(More)
Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 microm. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced(More)
Monte Carlo simulation (MCS) plays a key role in medical applications, especially for emission tomography and radiotherapy. However MCS is also associated with long calculation times that prevent its use in routine clinical practice. Recently, graphics processing units (GPU) became in many domains a low cost alternative for the acquisition of high(More)
We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to(More)