Learn More
Primates engage in auditory behaviors under a broad range of signal-to-noise conditions. In this study, optimal linear receptive fields were measured in alert primate primary auditory cortex (A1) in response to stimuli that vary in spectrotemporal density. As density increased, A1 excitatory receptive fields systematically changed. Receptive field(More)
The brain's cerebral cortex decomposes visual images into information about oriented edges, direction and velocity information, and color. How does the cortex decompose perceived sounds? A reverse correlation technique demonstrates that neurons in the primary auditory cortex of the awake primate have complex patterns of sound-feature selectivity that(More)
Tactile pattern recognition depends on form and texture perception. A principal dimension of texture perception is roughness, the neural coding of which was the focus of this study. Previous studies have shown that perceived roughness is not based on neural activity in the Pacinian or cutaneous slowly adapting type II (SAII) neural responses or on mean(More)
This paper concerns the characterization of performance and perceptual learning of somatosensory interval discrimination. The purposes of this study were to define (1) the performance characteristics for interval discrimination in the somatosensory system by naive adult humans, (2) the normal capacities for improvement in somatosensory interval(More)
Since the dawn of experimental psychology, researchers have sought an understanding of the fundamental relationship between the amplitude of sensory stimuli and the magnitudes of their perceptual representations. Contemporary theories support the view that magnitude is encoded by a linear increase in firing rate established in the primary afferent pathways.(More)
A new class of brain implant technology was developed that allows the simultaneous recording of voltage signals from many individual neurons in the cerebral cortex during cognitive tasks. The device allows recording from 49 independent positions spanning a 2 x 2-mm region of neural tissue. The recording electrodes are positioned in a square grid with 350(More)
In instrumental learning, Thorndike's law of effect states that stimulus-response relations are strengthened if they occur prior to positive reinforcement and weakened if they occur prior to negative reinforcement. In this study, we demonstrate that neural correlates of Thorndike's law may be observed in the primary auditory cortex, A1. Adult owl monkeys(More)
Monkey cutaneous SAI and RA responses to raised and depressed scanned patterns: effects of width, height, orientation, and a raised surround. J. Neurophysiol. 78: 2503-2517, 1997. The aim of this study was to examine the slowly adapting type I (SAI) and rapidly adapting (RA) primary afferent representation of raised and depressed surface features. Isolated,(More)
Many communication sounds, such as New World monkey twitter calls, contain frequency-modulated (FM) sweeps. To determine how this prominent vocalization element is represented in the auditory cortex we examined neural responses to logarithmic FM sweep stimuli in the primary auditory cortex (AI) of two awake owl monkeys. Using an implanted array of(More)
In this brief review, the body of work on hand use and cortical plasticity is reviewed. The hand movements and sensory inputs are represented in the mammalian primary motor cortex and the anterior parietal strip. The dominant organizational rules are that representational area is proportional to peripheral innervation, and that cortical architecture is(More)