Learn More
In six vervet monkeys, presynaptic striatal dopamine function was assessed longitudinally by [18F]fluoro-L-DOPA (FDOPA)-positron emission tomography (PET) after administration (2 x 2 mg/kg, i.m., 4 h apart) of either amphetamine (Amp), n = 3, or methamphetamine (MeAmp), n = 3. At 1-2 weeks postdrug, both Amp and MeAmp exposure effected similar decreases(More)
A chronic 10-day amphetamine (Amp) protocol was used to induce significant long-term decrements of the striatal [18F]fluoro-L-DOPA influx rate constant (FDOPA Ki) in the vervet monkey. Longitudinal FDOPA-positron emission tomography (PET) assessment in Amp-treated subjects subsequently revealed a gradual recovery of striatal dopamine function: FDOPA Ki(More)
The acute and long-term effects of chronic amphetamine administration on the striatal dopamine system in monkeys were assessed with 6-[18F]fluoro-L-DOPA (FDOPA) and positron emission tomography (PET). Vervet monkeys (Cerecopithecus aethiops) were administered amphetamine doses, i.m., that increased from 4 mg/kg/d to 18 mg/kg/d over a 10 day period.(More)
OBJECTIVE β-Cells that express an imaging reporter have provided powerful tools for studying β-cell development, islet transplantation, and β-cell autoimmunity. To further expedite diabetes research, we generated transgenic C57BL/6 "MIP-TF" mice that have a mouse insulin promoter (MIP) driving the expression of a trifusion (TF) protein of three imaging(More)
We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered(More)
With the development of in-vivo free-space fluorescence molecular imaging and multi-modality imaging for small animals, there is a need for new reconstruction methods for real animal-shape models with a large dataset. In this paper we are reporting a novel hybrid adaptive finite element algorithm for fluorescence tomography reconstruction, based on a linear(More)
Micro-CT is widely used in preclinical studies of small animals. Due to the low soft-tissue contrast in typical studies, segmentation of soft tissue organs from noncontrast enhanced micro-CT images is a challenging problem. Here, we propose an atlas-based approach for estimating the major organs in mouse micro-CT images. A statistical atlas of major trunk(More)
Through restoration of the light source information in small animals in vivo, optical molecular imaging, such as fluorescence molecular tomography (FMT) and bioluminescence tomography (BLT), can depict biological and physiological changes observed using molecular probes. A priori information plays an indispensable role in tomographic reconstruction. As a(More)
Many research institutions have a full suite of preclinical tomographic scanners to answer biomedical questions in vivo. Routine multi-modality imaging requires robust registration of images generated by various tomographs. We have implemented a hardware registration method for preclinical imaging that is similar to that used in the combined positron(More)
In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing ( 1 norm) regularization term with a quadratic error term in the IVTCG-based(More)