David B Stern

Learn More
Chlamydomonas reinhardtii is a unicellular eukaryotic alga possessing a single chloroplast that is widely used as a model system for the study of photosynthetic processes. This report analyzes the surprising structural and evolutionary features of the completely sequenced 203,395-bp plastid chromosome. The genome is divided by 21.2-kb inverted repeats into(More)
The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo(More)
We have characterized the biochemical nature and the function of PsbZ, the protein product of a ubiquitous open reading frame, which is known as ycf9 in Chlamydomonas and ORF 62 in tobacco, that is present in chloroplast and cyanobacterial genomes. After raising specific antibodies to PsbZ from Chlamydomonas and tobacco, we demonstrated that it is a bona(More)
The Chlamydomonas reinhardtii chloroplast atpB mRNA contains sequences at its 3' end that can form a complex stem/loop structure. Deletions of part or all of this sequence in transformed C. reinhardtii cells led to decreased atpB mRNA accumulation, whereas transcription rates were unaffected. The reduction of mRNA to 20% to 35% of wild-type levels in(More)
The chloroplast genome encodes proteins required for photosynthesis, gene expression, and other essential organellar functions. Derived from a cyanobacterial ancestor, the chloroplast combines prokaryotic and eukaryotic features of gene expression and is regulated by many nucleus-encoded proteins. This review covers four major chloroplast(More)
Arabidopsis thaliana chloroplasts contain at least two 3' to 5' exoribonucleases, polynucleotide phosphorylase (PNPase) and an RNase R homolog (RNR1). PNPase has been implicated in both mRNA and 23S rRNA 3' processing. However, the observed maturation defects do not affect chloroplast translation, suggesting that the overall role of PNPase in maturation of(More)
Genome rearrangements influence gene order and configuration of gene clusters in all genomes. Most land plant chloroplast DNAs (cpDNAs) share a highly conserved gene content and with notable exceptions, a largely co-linear gene order. Conserved gene orders may reflect a slow intrinsic rate of neutral chromosomal rearrangements, or selective constraint. It(More)
The acetate-requiring Chlamydomonas reinhardtii nuclear mutant F16 harbors the mutation mcd1-1 and fails to accumulate the cytochrome b6/f complex. The primary defect of mcd1-1 was determined to be the instability of petD mRNA, which encodes subunit IV of the complex. Chimeric reporter genes introduced by chloroplast transformation demonstrated that the(More)
Correct 3' processing of chloroplast precursor mRNAs (pre-mRNAs) requires a stem-loop structure within the 3' untranslated region. In spinach, a stable 3' stem-loop-protein complex has been shown to form in vitro between petD pre-mRNA, encoding subunit IV of the cytochrome b6/f complex, and chloroplast proteins. This complex contains three chloroplast(More)