Learn More
Although the mechanical behavior of single-motor protein molecules such as kinesin has been carefully studied in buffer, the mechanical behavior of motor-driven vesicles in cells is much less understood. We have tracked single vesicles in neurites of PC12 cells with a spatial precision of +/-30 nm and a time resolution of 120 ms. Because the neurites are(More)
Mucus clearance is the primary defense mechanism that protects airways from inhaled infectious and toxic agents. In the current gel-on-liquid mucus clearance model, a mucus gel is propelled on top of a "watery" periciliary layer surrounding the cilia. However, this model fails to explain the formation of a distinct mucus layer in health or why mucus(More)
Muco-ciliary transport in the human airway is a crucial defense mechanism for removing inhaled pathogens. Optical coherence tomography (OCT) is well-suited to monitor functional dynamics of cilia and mucus on the airway epithelium. Here we demonstrate several OCT-based methods upon an actively transporting in vitro bronchial epithelial model and ex vivo(More)
The purpose of this paper is to deduce whether the maximum force, steplike movement, and rate of ATP consumption of kinesin, as measured in buffer, are sufficient for the task of fast transport of vesicles in cells. Our results show that moving a 200-nm vesicle in viscoelastic COS7 cytoplasm, with the same steps as observed for kinesin-driven beads in(More)
In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at(More)
OBJECTIVE This study used high-frequency ultrasound (HFU) imaging to assess muscle damage noninvasively in a longitudinal study of 2 transgenic murine models of Duchenne muscular dystrophy (DMD): mdx, which has mutated cytoskeletal protein dystrophin; and udx, which has mutated dystrophin and lacks another cytoskeleton protein, utrophin. The mdx group was(More)
BACKGROUND Therapeutic intervention in the pathophysiology of airway mucus hypersecretion is clinically important. Several types of drugs are available with different possible modes of action. We examined the effects of guaifenesin (GGE), N-acetylcysteine (NAC) and ambroxol (Amb) on differentiated human airway epithelial cells stimulated with IL-13 to(More)
Video-enhanced differential interference contrast microscopy with background subtraction has made visible many structures and processes in living cells. In video-enhanced differential interference contrast, the background image is stored manually by defocusing the microscope before images are acquired. We have updated and improved video-enhanced(More)
Motile cilia are unique multimotor systems that display coordination and periodicity while imparting forces to biological fluids. They play important roles in normal physiology, and ciliopathies are implicated in a growing number of human diseases. In this work we measure the response of individual human airway cilia to calibrated forces transmitted via(More)
A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the(More)