David Angulo-Garcia

Learn More
Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In(More)
We consider pulse-coupled leaky integrate-and-fire neural networks with randomly distributed synaptic couplings. This random dilution induces fluctuations in the evolution of the macroscopic variables and deterministic chaos at the microscopic level. Our main aim is to mimic the effect of the dilution as a noise source acting on the dynamics of a globally(More)
Neurons in the intact brain receive a continuous and irregular synaptic bombardment from excitatory and inhibitory pre- synaptic neurons, which determines the firing activity of the stimulated neuron. In order to investigate the influence of inhibitory stimulation on the firing time statistics, we consider Leaky Integrate-and-Fire neurons subject to(More)
Here we show that a simple inhibitory network model, made of sparsely connected Leaky Integrate and Fire (LIF) neurons, is able to retrieve some of the relevant dynamical features of a striatal network, in particular the appearance of cell assembly dynamics as it has been reported in in-vitro experiments of rats striatum [1]. In a first approach, we discuss(More)
Alessandro Torcini Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France Aix Marseille Univ, INSERM, INMED and INS, Inst Neurosci Syst, Marseille, France Aix Marseille Univ, Université de Toulon, CNRS, CPT, UMR 7332, 13288 Marseille, France CNR Consiglio Nazionale delle Ricerche(More)
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the(More)
  • 1