Learn More
We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04±0.16 and 1.14±0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current ν(e,μ,τ) (ν(e,μ,τ)) or charged-current ν(e)(More)
AIMS Comorbidity, such as myocardial infarction, diabetes, and renal failure, plays a pivotal role in the prognosis of a patient with arrhythmias. However, data on the prognostic impact of comorbiditiy in heart failure patients with cardiac resynchronization therapy and defibrillation (CRT-D) are scarce. The purpose of this study was to determine the impact(More)
Endolymphatic potential (EP) and intracellular resting potentials (RPs) in the cochlea of the alligator lizard were measured with micropipets. The EP (defined as the dc electric potential recorded between the endolymph in scala media and the perilymph in scala tympani or scala vestibuli) had a mean value of +16 mV (in 96 ears). The RPs (defined as the dc(More)
We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were(More)
Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above ∼500 GeV at the surface, which provides an efficient(More)
Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy,(More)
117 The IceCube project has transformed one cubic kilometer of deep natural 118 Antarctic ice into a Cherenkov detector. Muon neutrinos are detected and their 119 direction inferred by mapping the light produced by the secondary muon track 120 inside the volume instrumented with photomultipliers. Reconstructing the muon 121 track from the observed light is(More)
We present the results of a search for neutrino point sources using the Ice-Cube data collected between April 2008 and May 2011 with three partially completed configurations of the detector: the 40-, 59-and 79-string configurations. The live-time of this data set are 1,040 days. An unbinned maximum likelihood ratio test was used to search for an excess of(More)
We present the results of a first search for self-annihilating dark matter in nearby galaxies and galaxy clusters using a sample of high-energy neutrinos acquired in 339.8 days of live time during 2009/10 with the IceCube neutrino observatory in its 59-string configuration. The targets of interest include the Virgo and Coma galaxy clusters, the Andromeda(More)