Learn More
Efficient and accurate protein localization is essential to cells and requires protein-targeting machineries to both effectively capture the cargo in the cytosol and productively unload the cargo at the membrane. To understand how these challenges are met, we followed the interaction of translating ribosomes during their targeting by the signal recognition(More)
The signal recognition particle (SRP) and SRP receptor comprise the major cellular machinery that mediates the cotranslational targeting of proteins to cellular membranes. It remains unclear how the delivery of cargos to the target membrane is spatially coordinated. We show here that phospholipid binding drives important conformational rearrangements that(More)
The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this(More)
Approximately one-third of the proteome is initially destined for the eukaryotic endoplasmic reticulum or the bacterial plasma membrane. The proper localization of these proteins is mediated by a universally conserved protein-targeting machinery, the signal recognition particle (SRP), which recognizes ribosomes carrying signal sequences and, through(More)
Signal recognition particle (SRP) and its receptor (SR) comprise a highly conserved cellular machine that cotranslationally targets proteins to a protein-conducting channel, the bacterial SecYEG or eukaryotic Sec61p complex, at the target membrane. Whether SecYEG is a passive recipient of the translating ribosome or actively regulates this targeting(More)
In array processors, complex data reordering is often needed to realize the interconnection topologies between the computational nodes in algorithms. Several important algorithms, e.g., discrete trigonometric transforms and Viterbi decoding, can be represented in a radix-R form where the principal topology is stride by R permutation. In this paper, a(More)