Learn More
Protein translation has been implicated in different forms of synaptic plasticity, but direct in situ visualization of new proteins is limited to one or two proteins at a time. Here we describe a metabolic labeling approach based on incorporation of noncanonical amino acids into proteins followed by chemoselective fluorescence tagging by means of 'click(More)
A major aim of proteomics is the identification of proteins in a given proteome at a given metabolic state. This protocol describes the step-by-step labeling, purification and detection of newly synthesized proteins in mammalian cells using the non-canonical amino acid azidohomoalanine (AHA). In this method, metabolic labeling of newly synthesized proteins(More)
Protein synthesis is a dynamic process that tunes the cellular proteome in response to internal and external demands. Metabolic labeling approaches identify the general proteomic response but cannot visualize specific newly synthesized proteins within cells. Here we describe a technique that couples noncanonical amino acid tagging or puromycylation with the(More)
Protein expression in the nervous system undergoes regulated changes in response to changes in behavioral states, in particular long-term memory formation. Recently, methods have been developed (BONCAT and FUNCAT), which introduce non-canonical amino acids bearing small bio-orthogonal functional groups into proteins using the cells' own translational(More)
Long nanotubes of fluid-lipid bilayers can be used to create templates for photochemical polymerization into solid-phase conduits and networks. Each nanotube is pulled from a micropipette-held feeder vesicle by mechanical retraction of the vesicle after molecular bonding to a rigid substrate. The caliber of the tube is controlled precisely in a range from(More)
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate(More)
A family of uniform periodic polypeptides has been prepared by bacterial expression of the corresponding artificial genes, with the objective of exploring the potential for control of supramolecular organization in genetically engineered protein-based polymeric materials. The repeating units of the polypeptides consist of oligomeric alanyl-glycine sequences(More)
Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encoding the quorum-sensing regulatory components luxR, luxO,(More)
Biological cells sense and respond to mechanical forces, but how such a mechanosensing process takes place in a nonlinear inhomogeneous fibrous matrix remains unknown. We show that cells in a fibrous matrix induce deformation fields that propagate over a longer range than predicted by linear elasticity. Synthetic, linear elastic hydrogels used in many(More)