Learn More
The efficiency of soybean [Glycine max (L.) Merrill] transformation was significantly increased from an average of 0.7% to 16.4% by combining strategies to enhance Agrobacterium tumefaciens-mediated T-DNA delivery into cotyledonary-node cells with the development of a rapid, efficient selection protocol based on hygromycin B. Wounded cotyledonary-node(More)
A major limitation in producing transgenic soybeans [Glycine max (L.) Merrill] using the Agrobacterium-mediated cotyledonary-node method is low-frequency T-DNA transfer from Agrobacterium tumefaciens into cotyledonary-node cells. We increased Agrobacterium infection from 37% to 91% of explants in the cotyledonary-node region by amending the solid(More)
Transgene loci in 16 transgenic oat (Avena sativa L.) lines produced by microprojectile bombardment were characterized using phenotypic and genotypic segregation, Southern blot analysis, and fluorescence in situ hybridization (FISH). Twenty-five transgene loci were detected; 8 lines exhibited single transgene loci and 8 lines had 2 or 3 loci. Double FISH of(More)
Integration of transgenic DNA into the plant genome was investigated in 13 transgenic oat (Avena sativa L.) lines produced using microprojectile bombardment with one or two cotransformed plasmids. In all transformation events, the transgenic DNA integrated into the plant genome consisted of intact transgene copies that were accompanied by multiple,(More)
Microprojectile bombardment to deliver DNA into plant cells represents a major breakthrough in the development of plant transformation technologies and accordingly has resulted in transformation of numerous species considered recalcitrant to Agrobacterium- or protoplast-mediated transformation methods. This article attempts to review the current(More)
Agrobacterium-mediated transformation of soybean cells and the production of fertile transgenic soybean [Glycine max (L.) Merrill] plants using the cotyledonary-node (cot-node) method were improved by amending the solid co-cultivation medium with L-cysteine. The goal of this study was to investigate the role of cysteine and other thiol compounds in(More)
Resistance to Fusarium head blight (FHB), deoxynivalenol (DON) accumulation, and kernel discoloration (KD) in barley are difficult traits to introgress into elite varieties because current screening methods are laborious and disease levels are strongly influenced by environment. To improve breeding strategies directed toward enhancing these traits, we(More)
Fusarium head blight (FHB) of wheat is a crippling disease that causes severe economic losses in many of the wheat-growing regions of the world. Temporal patterns of fungus development and transcript accumulation of defense response genes were studied in Fusarium graminearum-inoculated wheat spikes within the first 48 to 76 h after inoculation (hai).(More)
Dihydrodipicolinate synthase (EC 4.2.1.52), the first enzyme specific to lysine biosynthesis in plants, was purified from maize (Zea mays L.) cell suspension cultures and leaves. The subunit molecular weight of maize dihydrodipicolinate synthase was estimated to be 38,000 based on SDS-PAGE. The condensation of l-aspartate semialdehyde and pyruvate by highly(More)
Aspartate kinase (AK) and homoserine dehydrogenase (HSDH) are enzymes in the aspartate-derived amino acid biosynthetic pathway. Recent biochemical evidence indicates that an AK-HSDH bifunctional enzyme exists in maize (Zea mays L.). In this report, we characterize three genes that encode subunits of AK-HSDH. Two cDNAs, pAKHSDH1 and pAKHSDH2, containing the(More)