Learn More
The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only(More)
This report examines the effect of polyunsaturated fatty acids (PUFA) on lipogenic gene expression in cultured 3T3-L1 adipocytes. Arachidonic acid (20:4, n-6) and eicosapentaenoic acid (20:5, n-3) suppressed mRNAs encoding fatty acid synthase (FAS) and S14, but had no effect on beta-actin. Using a clonal adipocyte cell line containing a stably integrated(More)
The AMP-activated protein kinase is a sensor of cellular energy status that is found in all eukaryotic cells. It is activated by rising AMP and falling ATP by a complex mechanism that results in an ultrasensitive response. The functions of the different domains on the three subunits of the alphabetagamma heterotrimer are slowly being unravelled, and a(More)
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy charge and a 'metabolic master switch'. When activated by ATP depletion, it switches off ATP-consuming processes, while switching on catabolic pathways that generate ATP. AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits,(More)
In the present study, the time course of change in sucrose-induced insulin resistance, triglyceride (TG) concentration, and liver fatty acid composition was examined. Male rats (n = 8-10/group per time point) was fed a high-starch (ST) diet for 2 wk and were then equicalorically fed ST or a high-sucrose (SU) diet for 1, 2, 5, or 8 wk. Body weight and(More)
Skeletal muscle plays a major role in insulin-stimulated glucose disposal. This paper reviews the range of evidence in humans and experimental animals demonstrating close associations between insulin action and two major aspects of muscle morphology: fatty acid composition of the major structural lipid (phospholipid) in muscle cell membranes and relative(More)
The AMP-activated protein kinase (AMPK) is an alphabetagamma heterotrimer that is activated by low cellular energy status and affects a switch away from energy-requiring processes and toward catabolism. While it is primarily regulated by AMP and ATP, high muscle glycogen has also been shown to repress its activation. Mutations in the gamma2 and gamma3(More)
In animal studies, increased amounts of triglyceride associated with skeletal muscle (mTG) correlate with reduced skeletal muscle and whole body insulin action. The aim of this study was to test this relationship in humans. Subjects were 38 nondiabetic male Pima Indians (mean age 28 +/- 1 years). Insulin sensitivity at physiological (M) and(More)
BACKGROUND Insulin resistance and hyperinsulinemia are features of obesity, non-insulin-dependent diabetes mellitus, and other disorders. Skeletal muscle is a major site of insulin action, and insulin sensitivity may be related to the fatty-acid composition of the phospholipids within the muscle membranes involved in the action of insulin. METHODS We(More)
Polyunsaturated fatty acids (PUFA) suppress hepatic lipogenic gene transcription through a peroxisome proliferator activated receptor alpha (PPARalpha)- and cyclooxygenase-independent mechanism. Recently, the sterol response element-binding protein 1 (SREBP1) was implicated in the nutrient control of lipogenic gene expression. In this report, we have(More)