David A. Muller

Learn More
The flavivirus nonstructural glycoprotein NS1 is an enigmatic protein whose structure and mechanistic function have remained somewhat elusive ever since it was first reported in 1970 as a viral antigen circulating in the sera of dengue-infected patients. All flavivirus NS1 genes share a high degree of homology, encoding a 352-amino-acid polypeptide that has(More)
To enhance and optimize nanocatalyst performance and durability for the oxygen reduction reaction in fuel-cell applications, we look beyond Pt-metal disordered alloys and describe a new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell. These nanocatalysts exhibited over 200% increase(More)
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a(More)
Complications arising from dengue virus infection include potentially fatal vascular leak, and severe disease has been linked with excessive immune cell activation. An understanding of the triggers of this activation is critical for the development of appropriately targeted disease control strategies. We show here that the secreted form of the dengue virus(More)
Recent progress in large-area synthesis of monolayer molybdenum disulphide, a new two-dimensional direct-bandgap semiconductor, is paving the way for applications in atomically thin electronics. Little is known, however, about the microstructure of this material. Here we have refined chemical vapour deposition synthesis to grow highly crystalline islands of(More)
We use atomic force microscopy to image grain boundaries and ripples in graphene membranes obtained by chemical vapor deposition. Nanoindentation measurements reveal that out-of-plane ripples effectively soften graphene's in-plane stiffness. Furthermore, grain boundaries significantly decrease the breaking strength of these membranes. Molecular dynamics(More)
The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics,(More)
Single crystals are usually faceted solids with homogeneous chemical compositions. Biogenic and synthetic calcite single crystals, however, have been found to incorporate macromolecules, spurring investigations of how large molecules are distributed within the crystals without substantially disrupting the crystalline lattice. Here, electron tomography(More)
Micropatterning of single crystals for technological applications is a complex, multistep process. Nature provides alternative fabrication strategies, when crystals with exquisite micro-ornamentation directly develop within preorganized frameworks. We report a bio-inspired approach to growing large micropatterned single crystals. Micropatterned templates(More)
Bilayer graphene has been a subject of intense study in recent years. The interlayer registry between the layers can have dramatic effects on the electronic properties: for example, in the presence of a perpendicular electric field, a band gap appears in the electronic spectrum of so-called Bernal-stacked graphene [Oostinga JB, et al. (2007) Nature(More)