David A. Maltby

Learn More
Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host's cellular machinery during the course of infection. Here we(More)
An active site, cofactor-containing peptide has been obtained in high yield from bovine serum amine oxidase. Sequencing of this pentapeptide indicates: Leu-Asn-X-Asp-Tyr. Analysis of the peptide by mass spectrometry, ultraviolet-visible spectroscopy, and proton nuclear magnetic resonance leads to the identification of X as 6-hydroxydopa. This result(More)
O-GlcNAc is a widespread dynamic carbohydrate modification of cytosolic and nuclear proteins with features analogous to phosphorylation. O-GlcNAc acts critically in many cellular processes, including signal transduction, protein degradation, and regulation of gene expression. However, the study of its specific regulatory functions has been limited by(More)
We developed a simple and rapid multiplex substrate-profiling method to reveal the substrate specificity of any endo- or exopeptidase using liquid chromatography-tandem mass spectrometry sequencing. We generated a physicochemically diverse library of peptides by incorporating all combinations of neighbor and near-neighbor amino acid pairs into decapeptide(More)
The synthesis of aromatic polyketides, such as actinorhodin, tetracycline and doxorubicin, begins with the formation of a polyketide chain. In type II polyketide synthases (PKSs), chains are polymerized by the heterodimeric ketosynthase-chain length factor (KS-CLF). Here we present the 2.0-A structure of the actinorhodin KS-CLF, which shows polyketides(More)
The inflammatory caspases, human caspases-1, -4, and -5, proteolytically modulate diverse physiological outcomes in response to proinflammatory signals. Surprisingly, only a few substrates are known for these enzymes, including other caspases and the interleukin-1 family of cytokines. To more comprehensively characterize inflammatory caspase substrates, we(More)
Cumene hydroperoxide-mediated (CuOOH-mediated) inactivation of cytochromes P450 (CYPs) results in destruction of their prosthetic heme to reactive fragments that irreversibly bind to the protein. We have attempted to characterize this process structurally, using purified, 14C-heme labeled, recombinant human liver P450 3A4 as the target of CuOOH-mediated(More)
Deficiency of 3-hydroxy-3-methylglutaryl-coenzyme A (CoA) lyase affects the metabolism of leucine as well as ketogenesis. This disorder is one of an increasing list of inborn errors of metabolism that presents clinically like Reye's Syndrome or nonketotic hypoglycemia. Four patients with proven 3-hydroxy-3-methylglutaryl-CoA lyase deficiency were shown to(More)
Evidence is presented for the existence of a noncellulosic beta-1,3-glucan in cotton fibers. The glucan can be isolated as distinct fractions of varying solubility. When fibers are homogenized rigorously in aqueous buffer, part of the total beta-1,3-glucan is found as a soluble polymer in homogenates freed of cell walls. The proportion of total(More)
Cold-induced changes of gene expression and metabolism are critical for plants to survive freezing. Largely by changing gene expression, exposure to a period of non-freezing low temperatures increases plant tolerance to freezing-a phenomenon known as cold acclimation. Cold also induces rapid metabolic changes, which provide instant protection before(More)