David A. Karanian

Learn More
Dopamine signaling in the nucleus accumbens (NAc) plays an important role in regulating drug-taking and drug-seeking behaviors, but the role of D1- and D2-like receptors in this regulation remains unclear. Our objective was to study the role of NAc D1- and D2-like receptors in the reinstatement of cocaine-seeking behavior and the regulation of stabilized(More)
Individual differences in locomotor responses to novelty and psychostimulants, and sensitization following repeated drug exposure, predict increased sensitivity to the reinforcing effects of psychostimulants and are thought to underlie vulnerability to drug addiction. This study tested whether these factors determine another core feature of drug addiction,(More)
Cocaine addiction is thought to involve persistent neurobiological changes that facilitate relapse to drug use despite efforts to abstain. But the propensity for relapse may be reduced by extinction training--a form of inhibitory learning that progressively reduces cocaine-seeking behaviour in the absence of cocaine reward. Here we show that extinction(More)
Chronic exposure to drugs of abuse is known to modulate tyrosine hydroxylase (TH) levels in the mesolimbic dopamine system. In this study, 12 d of cocaine self-administration in rats (4 hr/d) reduced TH immunoreactivity by 29% in the nucleus accumbens (NAc) shell, but not core, after a 1 week withdrawal period. In contrast, TH immunoreactivity in the NAc(More)
Selective D1 dopamine agonists represent a potential pharmacotherapy for the treatment of cocaine addiction. Here we report that systemic injections of the novel D1 agonist ABT-431 lack the ability to induce cocaine-seeking behavior, and completely attenuate the ability of cocaine to induce this behavior in rats tested in a reinstatement paradigm. Similar(More)
Endocannabinoids, including anandamide (AEA), have been implicated in neuroprotective on-demand responses. Related to such a response to injury, an excitotoxic kainic acid (KA) injection (i.p.) was found to increase AEA levels in the brain. To modulate the endocannabinoid response during events of excitotoxicity in vitro and in vivo, we utilized a new(More)
Protein oligomerization and aggregation are key events in age-related neurodegenerative disorders, causing neuronal disturbances including microtubule destabilization, transport failure and loss of synaptic integrity that precede cell death. The abnormal buildup of proteins can overload digestive systems and this, in turn, activates lysosomes in different(More)
Synaptic pathology is associated with protein accumulation events, and is thought by many to be the best correlate of cognitive impairment in normal aging and different types of dementia including Alzheimer's disease. Numerous studies point to the disruption of microtubule-based transport mechanisms as a contributor to synaptic degeneration. Reported(More)
Endocannabinoids are released in response to pathogenic insults, and inhibitors of endocannabinoid inactivation enhance such on-demand responses that promote cellular protection. Here, AM374 (palmitylsulfonyl fluoride), an irreversible inhibitor of fatty acid amide hydrolase (FAAH), was injected i.p. into rats to test for endocannabinoid enhancement. AM374(More)
The endocannabinoid system has been suggested to elicit signals that defend against several disease states including excitotoxic brain damage. Besides direct activation with CB1 receptor agonists, cannabinergic signaling can be modulated through inhibition of endocannabinoid transport and fatty acid amide hydrolase (FAAH), two mechanisms of endocannabinoid(More)