David A. Hinton

Learn More
beta 1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is localized both in the Golgi complex and on the cell surface. Most studies of surface GalTase function have focused on its role in cellular interactions; however, surface GalTase has also been suggested to function during cellular proliferation. Consistent with(More)
In the adult mouse, epidermal growth factor (EGF) is synthesized in granular convoluted tubule (intralobular) duct cells of the submandibular gland and in distal tubule cells of the kidney. The presence of EGF in developing tissues and maternal milk and the localization of EGF receptors in developing tissues suggest a role for EGF in developmental(More)
The effect of epidermal growth factor (EGF) on cellular differentiation of the neonatal mouse mandibular incisor was examined autoradiographically using tritiated thymidine ([3H]TDR) and tritiated proline ([3H]PRO). On days 0 (day of birth), 1, and 2, EGF was administered (3 micrograms/g body wt) sc to neonates. Mice were killed on Days 1, 4, 7, 10, and 13(More)
Beta 1,4-Galactosyltransferase is traditionally viewed as a biosynthetic component of the Golgi complex, but a portion of galactosyltransferase is also expressed on the cell surface, where it has been suggested to function as a receptor for extracellular oligosaccharide ligands. Although results from a variety of studies are consistent with a cell adhesion(More)
The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS(More)
The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations element at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to(More)
A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and(More)