Learn More
Seasonally breeding animals use a combination of photic (i.e. day length) and nonphotic (e.g. food availability, temperature) cues to regulate their reproduction. How these environmental cues are integrated is not understood. To assess the potential role of two candidate neuropeptides, kisspeptin and RFamide-related peptide-3 (RFRP), we monitored regional(More)
The role of the intergeniculate leaflet of the thalamus (IGL) in photoperiod responsiveness was examined in a laboratory-selected line of photoperiod nonresponsive (NR) Siberian hamsters. NR hamsters fail to exhibit typical winter-type responses (i.e., gonadal regression and development of winter-type pelage) when exposed to short day lengths (e.g., 10 h of(More)
Siberian hamsters (Phodopus sungorus) exhibit seasonal cycles of reproduction driven by changes in day length. Day length is encoded endogenously by the duration of nocturnal melatonin (Mel) secretion from the pineal gland. Short-duration Mel signals stimulate reproduction and long-duration signals inhibit reproduction. The mechanism by which Mel signals(More)
The mid-winter development of refractoriness to melatonin (Mel) triggers recrudescence of the atrophied reproductive apparatus of rodents. As a consequence, over-wintering animals become reproductively competent just before the onset of spring conditions favorable for breeding. The neural target tissues that cease to respond to winter Mel signals have not(More)
In studies of photoperiodism, animals typically are transferred abruptly from a long (e.g., 16 h light per day [16L]) to a short (8L) photoperiod, and circadian oscillators that regulate pineal melatonin secretion are presumed to reentrain rapidly to the new photocycle. Among rats and Siberian hamsters, however, reentrainment rates vary depending on whether(More)
Juvenile male Siberian hamsters from a line of hamsters selected for nonresponsiveness to short photoperiod (PNRj) and animals from the general colony (UNS) were separated at weaning into two groups. Group 1 males were moved into short days (10 h light:14 h dark [10L:14D]) with free access to running wheels (RW). Group 2 animals were the male siblings of(More)
Siberian hamsters are seasonal breeders that use changes in day length to synchronize their reproductive effort with those times of the year most favorable for successful reproduction. The ability of Siberian hamsters to measure and respond to changes in day length depends upon accurate photoentrainment of the circadian clock in the suprachiasmatic nucleus(More)
Siberian hamsters exhibit several seasonal rhythms in physiology and behaviour, including reproduction, energy balance, body mass, and pelage colouration. Unambiguous long- and short day lengths stimulate and inhibit reproduction, respectively. Whether gonadal growth or regression occurs in an intermediate day length (e.g. 14 h L : 10 h D; 14L), depends on(More)
To assess whether the mediobasal hypothalamus (MBH) is necessary for photoperiodic control of oestrous cycles and prolactin secretion, we tested intact female Syrian hamsters (controls) and those that had sustained unilateral or bilateral lesions of the MBH. All hamsters displayed 4-day oestrous cycles postoperatively in the long-day photoperiod (14 h(More)
We assessed the influence of perinatal melatonin on reproductive development and adult responsiveness to melatonin. Testicular growth in an intermediate day length (14 : 10 h light/dark cycle) was substantially reduced in Siberian hamsters gestated by pinealectomised compared to pineal-intact females; gonadal development was normalised in offspring of(More)