Learn More
Debate persists about the effectiveness of poststroke behavioral interventions for progress toward motor recovery. The current meta-analysis assessed the effect of electromyogram (EMG)-triggered neuromuscular stimulation on arm and hand functions. Computer searches of PubMed and Cochran databases, as well as hand searches of reference lists identified seven(More)
Posterior parietal cortex (PPC) constitutes a critical cortical node in the sensorimotor system in which goal-directed actions are computed. This information then must be transferred into commands suitable for hand movements to the primary motor cortex (M1). Complexity arises because reach-to-grasp actions not only require directing the hand towards the(More)
Damage to the dorsolateral prefrontal cortex (DLPFC) impairs gating of irrelevant sensory information at early cortical processing stages. We investigated how transient inhibition of DLPFC impacts early event-related potentials (ERPs) arising from relevant or irrelevant vibrotactile stimuli to the fingertips. Specifically, we hypothesized that suppression(More)
Several studies have shown that a light fingertip touch on a stable surface reduces body sway for individuals standing with their eyes closed even when touch forces are too low to offer mechanical support. It has been proposed that this is due to the availability of sway-relevant sensory feedback from the hand compensating for lost vision. Recently, we(More)
Availability of fingertip touch onto a stable surface reduces body sway for subjects standing with eyes closed. This is largely associated with sensory feedback from the fingertip when mechanical load is limited. Here, it is possible that the central nervous system facilitates cortical sensory processing to augment feedback to control upright stance. To(More)
The ease with which we avoid falling down belies a highly sophisticated and distributed neural network for controlling reactions to maintain upright balance. Although historically these reactions were considered within the sub cortical domain, mounting evidence reveals a distributed network for postural control including a potentially important role for the(More)
'Temporally urgent' reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the(More)
In walking quadrupeds the alternating activity pattern of antagonistic leg muscles and the coordination between legs is orchestrated by central pattern generating networks within the spinal cord. These networks are activated by tonic input from the reticular formation in the brainstem. Under more challenging conditions, such as walking on a horizontal(More)
To delineate the role of cutaneous feedback from the paws in the regulation of balance during walking, we compared the corrective responses of cats to lateral support surface translation before and after cutaneous denervation of the hindpaws. In addition, we compared characteristics of undisturbed walking before and after denervation. Electromyographic and(More)
Normal aging has been linked to impairments in gating of irrelevant sensory information and neural markers of diminished cognitive processing. Whilst much of the research in this area has focussed on visual and auditory modalities it is unclear to what degree these findings apply to somatosensation. Therefore we investigated how age impacts early(More)