David A Bechtold

Learn More
Inflammatory demyelinating neuropathies such as Guillain-Barre syndrome (GBS) and its animal model, experimental autoimmune neuritis (EAN), are typically acute monophasic diseases of the PNS that can leave affected individuals with permanent disability due primarily to axonal degeneration. The mechanisms underlying the degeneration are not understood, but(More)
Axonal degeneration is a major cause of permanent neurological deficit in multiple sclerosis (MS), but no current therapies for the disease are known to be effective at axonal protection. Here, we examine the ability of a sodium channel-blocking agent, flecainide, to reduce axonal degeneration in an experimental model of MS, chronic relapsing experimental(More)
The intrinsic period of circadian clocks is their defining adaptive property. To identify the biochemical mechanisms whereby casein kinase1 (CK1) determines circadian period in mammals, we created mouse null and tau mutants of Ck1 epsilon. Circadian period lengthened in CK1epsilon-/-, whereas CK1epsilon(tau/tau) shortened circadian period of behavior in(More)
Axonal degeneration is a major cause of permanent disability in multiple sclerosis (MS). Recent observations from our and other laboratories suggest that sodium accumulation within compromised axons is a key, early step in the degenerative process, and hence that limiting axonal sodium influx may represent a mechanism for axonal protection in MS. Here we(More)
The adipose-derived hormone, leptin, was discovered over 10 years ago, but only now are we unmasking its downstream pathways which lead to reduced energy intake (feeding) and increased energy expenditure (thermogenesis). Recent transgenic models have challenged the long-standing supposition that the hypothalamic arcuate nucleus (Arc) is omnipotent in the(More)
The ability of mammals to maintain a constant body temperature has proven to be a profound evolutionary advantage, allowing members of this class to thrive in most environments on earth. Intriguingly, some mammals employ bouts of deep hypothermia (torpor) to cope with reduced food supply and harsh climates [1, 2]. During torpor, physiological processes such(More)
The X-linked orphan receptor GPR50 shares 45% homology with the melatonin receptors, yet its ligand and physiological function remain unknown. Here we report that mice lacking functional GPR50 through insertion of a lacZ gene into the coding sequence of GPR50 exhibit an altered metabolic phenotype. GPR50 knockout mice maintained on normal chow exhibit lower(More)
We have shown previously that prolactin-releasing peptide (PrRP) plays a role in the regulation of feeding and energy expenditure in rats. We hypothesize that PrRP may have a physiological action through its putative receptor, GPR10, to mediate the central anorexigenic effects of peripheral satiety factors. Here we examine the effects of PrRP and(More)
Circadian pacemaking requires the orderly synthesis, posttranslational modification, and degradation of clock proteins. In mammals, mutations in casein kinase 1 (CK1) epsilon or delta can alter the circadian period, but the particular functions of the WT isoforms within the pacemaker remain unclear. We selectively targeted WT CK1epsilon and CK1delta using(More)
The classic view of circadian timing in mammals emphasizes a light-responsive 'master clock' within the hypothalamus which imparts temporal information to the organism. Recent work indicates that such a unicentric model of the clock is inadequate. Autonomous circadian timers have now been demonstrated in numerous brain regions and peripheral tissues in(More)