Learn More
PURPOSE This study tested the Ins2(Akita) mouse as an animal model of retinal complications in diabetes. The Ins2(Akita) mutation results in a single amino acid substitution in the insulin 2 gene that causes misfolding of the insulin protein. The mutation arose and is maintained on the C57BL/6J background. Male mice heterozygous for this mutation have(More)
Vascular endothelial growth factor (VEGF) may have a physiologic role in regulating vessel permeability and contributes to the pathophysiology of diabetic retinopathy as well as tumor development. We set out to ascertain the mechanism by which VEGF regulates paracellular permeability in rats. Intra-ocular injection of VEGF caused a post-translational(More)
OBJECTIVE Tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) are elevated in the vitreous of diabetic patients and in retinas of diabetic rats associated with increased retinal vascular permeability. However, the molecular mechanisms underlying retinal vascular permeability induced by these cytokines are poorly understood. In this study, the(More)
BACKGROUND Despite advances in the understanding of diabetic retinopathy, the nature and time course of molecular changes in the retina with diabetes are incompletely described. This study characterized the functional and molecular phenotype of the retina with increasing durations of diabetes. RESULTS Using the streptozotocin-induced rat model of(More)
PURPOSE To investigate how diabetes alters vascular endothelial cell tight junction protein and glial cell morphology at the blood-retinal barrier (BRB). METHODS The distribution of the glial marker, glial fibrillary acidic protein (GFAP), and the endothelial cell tight junction protein occludin were explored by immunofluorescence histochemistry in(More)
Normal vision depends on the normal function of retinal neurons, so vision loss in diabetes must ultimately be explained in terms of altered neuronal function. However to date relatively little attention has been paid to the impact of diabetes on the neural retina. Instead, the focus of most research has been primarily on retinal vascular changes, with the(More)
In the autosomal recessive human disease, glutaric aciduria type I (GA-1), glutaryl-CoA dehydrogenase (GCDH) deficiency disrupts the mitochondrial catabolism of lysine and tryptophan. Affected individuals accumulate glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in the serum and often suffer acute striatal injury in childhood. Prior attempts to(More)
For peripheral iron to reach the brain, it must transverse the blood-brain barrier. In order for the brain to obtain iron, transferrin receptors are present in the vascular endothelial cell to facilitate movement of transferrin bound iron into the brain parenchyma. However, a number of significant voids exist in our knowledge about transport of iron into(More)
Corticosteroids provide an effective treatment to reduce edema for conditions in which the blood-brain or blood-retinal barrier is compromised. However, little is known about the mechanism by which these hormones affect endothelial cell function. We hypothesized that hydrocortisone would reduce transport of water and solutes across bovine retinal(More)
Recent evidence suggests an important role for outer retinal cells in the pathogenesis of diabetic retinopathy (DR). Here we investigated the effect of the visual cycle inhibitor retinylamine (Ret-NH2) on the development of early DR lesions. Wild-type (WT) C57BL/6J mice (male, 2 months old when diabetes was induced) were made diabetic with streptozotocin,(More)