Learn More
Tuberoinfundibular dopamine (TIDA) neurons are the central regulators of prolactin (PRL) secretion. Their extensive functional plasticity allows a change from low PRL secretion in the non-pregnant state to the condition of hyperprolactinemia that characterizes lactation. To allow this rise in PRL, TIDA neurons are thought to become unresponsive to PRL at(More)
GABA and glutamate levels were measured in brain sites important for lordotic responding and in other hypothalamic sites after gonadal hormone treatments sufficient to activate lordosis. Estradiol increased GABA and glutamate in the ventromedial nucleus and the vertical diagonal bands. Progesterone administration to estradiol primed females led to a rapid(More)
Sexual differentiation of rodent brain is dependent upon hormonal exposure during a "critical period" beginning in late gestation and ending in early neonatal life. Steroid hormone action at this time results in anatomical and physiological sexual dimorphisms in adult brain, but the mechanism mediating these changes is essentially unknown. The inhibitory(More)
gamma-Aminobutyric acid (GABA)ergic neurons terminating in the rostral hypothalamus are stimulated by testosterone. To investigate whether this action is mediated locally through androgen receptors in the rostral hypothalamus, bilateral microcannulas (28 gauge) containing the androgen receptor antagonist, hydroxyflutamide (HF), were stereotaxically(More)
The rate of GABA turnover was determined in nine microdissected brain regions in adult male and female rats. In the medial preoptic nucleus (central aspect) and ventromedial nucleus (ventrolateral aspect) of the hypothalamus, areas involved in the regulation of gonadotropin secretion and sex behavior, GABAergic neuronal activity was about 2-fold greater in(More)
Gonadotropin-releasing hormone (GnRH), having a highly conserved structure across mammalian species, plays a pivotal role in the control of the neuroendocrine events and the inherent sexual behaviors essential for reproductive function. Recent advances in molecular genetic technology have contributed greatly to the investigation of several aspects of GnRH(More)
We recently determined that castration specifically decreased GABA turnover in discrete rostral and mediobasal hypothalamic structures. This study aimed to investigate whether testosterone could stimulate GABAergic neuronal activity in these hypothalamic GABAergic neurons in the castrate rat, and to compare the effects of episodic testosterone replacement(More)
During development, exposure to gonadal steroids results in brain sexual differentiation. Postnatally, hypothalamic gamma-aminobutyric acid (GABA) levels are almost double in males versus females. We hypothesized that increased GABA neonatally results in masculinization. Males, females, and androgenized females were infused intrahypothalamically with(More)
There is considerable evidence that GABAergic neurons play an important role in the regulation of gonadotropin-releasing hormone (GnRH) secretion, and that these neurons may mediate the feedback actions of gonadal steroids on GnRH neurons. The aim of the present study was to investigate whether endogenous changes in ovarian steroid secretion during the(More)
The postcastration LH response is greater and somewhat more rapid in male than female rats. We have previously demonstrated that hypothalamic gamma-aminobutyric acid (GABA)ergic neuronal activity decreases following gonadectomy in male rats. To investigate whether these same hypothalamic GABA neurons decrease their activity postcastration in female rats,(More)