Dave Delpy

Learn More
A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO(2)) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as(More)
Pulsed photoacoustic spectroscopy was used to measure blood oxygen saturation in vitro. An optical parametric oscillator laser system provided nanosecond excitation pulses over the wavelength range 740-1040 nm which were used to generate photoacoustic signals in a cuvette through which a saline suspension of red blood cells was circulated. The signal(More)
Photoacoustic spectroscopy has the potential to make non-invasive, spatially resolved measurements of absolute chromophore concentrations. This has a wide range of possible applications, for example the mapping of endogenous chromophores such as oxy-(HbO 2) and deoxyhaemoglobin (HHb) or externally administered contrast agents designed to target specific(More)
  • 1