Dattesh V. Desai

Learn More
The barnacle Balanus amphitrite Darwin is a dominant intertidal and major fouling organism. As its life cycle includes both sessile and pelagic phases, adaptation is a necessity to tolerate harsh conditions that are faced in the intertidal and pelagic environment. A downward trend in dissolved oxygen levels in coastal areas has been recently observed, which(More)
Macrobenthic polychaetes play a significant role in marine benthic food chain. A study was carried out to observe the abundance and diversity of soft bottom macrobenthic polychaetes along the South Indian coast, along with observations on sediment characteristics. The present study indicated an increase in the polychaete diversity as compared to earlier(More)
AbstractThe impact of a commonly-used antifouling algicide, Irgarol 1051, on the larval development and post-settlement metamorphosis of the barnacle, Balanus albicostatus Pilsbry (Crustacea: Cirripedia), and the larval metamorphosis of a serpulid polycheate, Pomatoleios kraussii Baird, was evaluated. In the case of B. albicostatus, larval mortality(More)
In order to examine the variations in inorganic carbon components in the thermal fronts, seven fronts have been sampled in the northeastern Arabian Sea during winter. The sea surface temperature (SST) was cooler by 0.2 to 1.03 C within the fronts sampled and three out of seven fronts have relatively saltier (by 0.04 to 0.10) and others were fresher (by 0.03(More)
As implementation of the Ballast Water Convention draws nearer a major challenge is the development of protocols which accurately assess compliance with the D-2 Standard. Many factors affect the accuracy of assessment: e.g. large volume of ballast water, the shape, size and number of ballast tanks and the heterogeneous distribution of organisms within(More)
The exoskeleton of most invertebrate larval forms is made of chitin, which is a linear polysaccharide of β (1→4)-linked N-acetylglucosamine (GlcNAc) residues. These larval forms offer extensive body surface for bacterial attachment and colonization. In nature, degradation of chitin involves a cascade of processes brought about by chitinases produced by(More)
The effect of Irgarol 1051 on the biofilm-forming diatom, Amphora coffeaformis, and on natural biofilm (NBF) was assessed. A reduction in the number of A. coffeaformis cells within a biofilm was observed after treatment with Irgarol 1051, confirming its role as an inhibitor of photosynthetic activity. The impact of this compound on the development of(More)
  • 1