Darshan H. Patel

Learn More
β-Glucosidase (β-1,4-D-glucoside glucohydrolase: EC. catalyzes the hydrolysis of β-glucosidic bonds between saccharides and aryl or alkyl groups. A gene encoding β-glucosidase from Bacillus licheniformis KCTC 1918, an anaerobic spore-forming soil bacterium, was cloned and characterized. The structural gene for the β-glucosidase consists of 1410 bp(More)
Enzymatic processes are useful for industrially important sugar production, and in vitro two-step isomerization has proven to be an efficient process in utilizing readily available sugar sources. A hypothetical uncharacterized protein encoded by ydaE of Bacillus licheniformis was found to have broad substrate specificities and has shown high catalytic(More)
l-Asparaginase (E.C. is used as a therapeutic agent in the treatment of acute childhood lymphoblastic leukemia. It is found in a variety of organisms such as microbes, plants and mammals. In plants, l-asparaginase enzymes are required to catalyze the release of ammonia from asparagine, which is the main nitrogen-relocation molecule in these(More)
The endoglucanase (Cel5B) from the filamentous fungus Gloeophyllum trabeum was cloned and expressed without a signal peptide, and alanine residue 22 converted to glutamine in Pichia pastoris GS115. The DNA sequence of Cel5B had an open reading frame of 1,077 bp, encoding a protein of 359 amino acid residues with a molecular weight of 47 kDa. On the basis of(More)
Experimental evidence in vivo as to the functional roles and binding properties to cadmium (Cd) of type-2 plants metallothionein (MT) has been limited thus far. We investigated the biological role of metallothionein from Colocasia esculenta (CeMT2b) in Escherichia coli and tobacco, and developed a new model for the relationship between Cd tolerance and(More)
In vitro site-directed repair or creation of a mutation is an invaluable technique in genetic and protein engineering. Several methods have appeared in literature but still require many modifications. We describe a rapid and efficient modified overlap extension PCR method for multiple uses in mutagenesis studies. The protocol is based on two rounds of PCR(More)
In medium where in vitro transfection is routinely performed, DC-chol liposomes alone were nearly neutral, whereas the DC-chol liposome/DNA complexes were largely negatively charged which changed only slightly at all [liposome]/[DNA] ratios (zeta=-27.1 to -21.8 mV). Three other commercial transfection reagents, Lipofectin(R), LipofectAMINE 2000, and(More)
We have tested the zeta potential (zeta, the surface charge density) of transfection complexes formed in serum-free medium as a rapid and reliable technique for screening transfection efficiency of a new reagent or formulation. The complexes of CAT plasmid DNA (1 microgram) and DC-chol/DOPE liposomes (3-20 nmol) were largely negatively charged (zeta=-15 to(More)
CURRENT SCIENCE, VOL. 84, NO. 6, 25 MARCH 2003 749 pared to those without AC. The cultures containing 0.3% polyvinylpyrollidone showed no improvement in response. The ultimate success of in vitro propagation lies in the successful establishment of plants in the soil. The regenerated plantlets of C. orchioides were transferred to thermocol cups containing(More)
Mutation in active site would either completely eliminate enzyme activity or may result in an active site with altered substrate-binding properties. The enzyme xylose isomerase (XI) is sterospecific for the α-pyranose and α-fructofuranose anomers and metal ions (M1 and M2) play a pivotal role in the catalytic action of this enzyme. Mutations were created at(More)