Learn More
It is shown that if F 1 , F 2 ,. .. , F t are bipartite 2-regular graphs of order n and α 1 , α 2 ,. .. , α t are non-negative integers such that α 1 +α 2 +· · ·+α t = n−2 2 , α 1 ≥ 3 is odd, and α i is even for i = 2, 3,. .. , t, then there exists a 2-factorisation of K n −I in which there are exactly α i 2-factors isomorphic to F i for i = 1, 2,. .. , t.(More)
In graph cleaning problems, brushes clean a graph by traversing it subject to certain rules. Various problems arise, such as determining the minimum number of brushes that are required to clean the entire graph. This number is called the brushing number. Here, we study a new variant of the brushing problem in which one vertex is cleaned at a time, but more(More)
It has been conjectured that any partial triple system of order u and index λ can be embedded in a triple system of order v and index λ whenever v ≥ 2u + 1, λ(v − 1) is even and λ v 2 ≡ 0 (mod 3). This conjecture is known to hold for λ = 1 and for all even λ ≥ 2. Here the conjecture is proven for all remaining values of λ when u ≥ 28.
  • 1