Learn More
Metabotropic (G-protein-coupled) glutamate (mGlu) receptors have now emerged as a recognized, but still relatively new area of excitatory amino acid research. Current understanding of the roles and involvement of mGlu receptor subtypes in physiological/pathophysiological functions of the central nervous system has been recently propelled by the emergence of(More)
Previous animal studies have indicated that drugs targeted at metabotropic glutamate (mGlu) receptors may be useful for treatment of psychosis. In this article, the effects of the novel, potent, and selective mGlu2/3 receptor agonists LY354740 and LY379268, and the clinically effective agents clozapine and haloperidol, were investigated using phencyclidine(More)
LY354740 is a conformationally constrained analog of glutamate which is a potent agonist for group II cAMP coupled metabotropic glutamate receptors (mGluRs). The discovery of this novel pharmacological agent has allowed the exploration of the functional consequences of activating group II mGluRs in vivo. In an effort to evaluate the clinical utility of(More)
The in vitro pharmacology of a structurally novel compound, LY341495, was investigated at human recombinant metabotropic glutamate (mGlu) receptor subtypes expressed in non-neuronal (RGT, rat glutamate transporter) cells. LY341495 was a nanomolar potent antagonist of 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD)-induced inhibition of(More)
The G protein-coupled metabotropic glutamate (mGlu) receptors are differentially localized at various synapses throughout the brain. Depending on the receptor subtype, they appear to be localized at presynaptic and/or postsynaptic sites, including glial as well as neuronal elements. The heterogeneous distribution of these receptors on glutamate and(More)
Anxiety and stress disorders are the most commonly occurring of all mental illnesses, and current treatments are less than satisfactory. So, the discovery of novel approaches to treat anxiety disorders remains an important area of neuroscience research. Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system, and(More)
Schizophrenia is a chronic, complex and heterogeneous mental disorder, with pathological features of disrupted neuronal excitability and plasticity within limbic structures of the brain. These pathological features manifest behaviorally as positive symptoms (including hallucinations, delusions and thought disorder), negative symptoms (such as social(More)
Metabotropic glutamate receptors (mGluRs) are a heterogeneous family of G protein-coupled glutamate receptors that are linked to multiple second messenger systems in the CNS. In this study the selectivity of mGluR agonists for different mGluR second messenger effects was characterized in slices of the rat hippocampus. The mGluR agonists(More)
  • D D Schoepp
  • 2001
Metabotropic glutamate (mGlu) receptors, which include mGlu1-8 receptors, are a heterogeneous family of G-protein-coupled receptors which function to modulate brain excitability via presynaptic, postsynaptic and glial mechanisms. Certain members of this receptor family have been shown to function as presynaptic regulatory mechanisms to control release of(More)
The principal excitatory neurotransmitter in the vertebrate central nervous system, L-glutamate, acts on three classes of ionotripic glutamate receptors, named after the agonists AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxalole-4-propionic acid), NMDA (N-methyl-D-aspartate) and kainate. The development of selective pharmacological agents has led to a(More)