Darrell R. Davis

Learn More
Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utility-using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterions-by re-investigating the solution structures of two RNA hairpins that(More)
Surface plasmon resonance (BIACORE) was used to determine the kinetic values for formation of the HIV TAR-TAR* ('kissing hairpin') RNA complex. The TAR component was also synthesized with the modified nucleoside 2-thiouridine at position 7 in the loop and the kinetics and equilibrium dissociation constants compared with the unmodified TAR hairpin. The(More)
The optional Escherichia coli restriction tRNase PrrC represents a family of potential antiviral devices widespread among bacteria. PrrC comprises a functional C-domain of unknown structure and regulatory ABC/ATPase-like N-domain. The possible involvement of a C-domain sequence in tRNA Lys recognition was investigated using a matching end-protected 11-meric(More)
Despite the many biological functions of RNA, very few drugs have been designed or found to target RNA. Here we report the results of molecular dynamics (MD) simulations and binding energy analyses on hepatitis C virus internal ribosome entry site (IRES) RNA in complex with highly charged 2-aminobenzimidazole inhibitors. Initial coordinates were taken from(More)
A fully automated program has been developed for analysing digitised cardiac monophasic action potentials (MAPs) of several animal species. Under diverse conditions, the program's performance is evaluated by comparison with high-resolution manual analysis of action potential duration, MAP detection, baseline and plateau determination. For each variable, the(More)
The optional Escherichia coli restriction tRNase PrrC represents a family of potential antiviral devices widespread among bacteria. PrrC comprises a functional C-domain of unknown structure and regulatory ABC/ATPase-like N-domain. The possible involvement of a C-domain sequence in tRNA(Lys) recognition was investigated using a matching end-protected(More)
  • 1