Darrell O. Ricke

Learn More
New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and(More)
The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and(More)
The Bacillus anthracis Sterne plasmid pXO1 was sequenced by random, "shotgun" cloning. A circular sequence of 181,654 bp was generated. One hundred forty-three open reading frames (ORFs) were predicted using GeneMark and GeneMark.hmm, comprising only 61% (110,817 bp) of the pXO1 DNA sequence. The overall guanine-plus-cytosine content of the plasmid is(More)
Bacillus anthracis plasmids pX01 and pX02, harboured by the Sterne and Pasteur strains, respectively, have been sequenced by random 'shotgun' cloning and high throughout sequence analysis. These sequences have been assembled (Sequencher) to generate a circulate pX01 plasmid containing 181 656 bp and a single linear (gapped) pX02 contig containing at least(More)
Traumatic lower-limb musculoskeletal injuries are pervasive amongst athletes and the military and typically an individual returns to activity prior to fully healing, increasing a predisposition for additional injuries and chronic pain. Monitoring healing progression after a musculoskeletal injury typically involves different types of imaging but these(More)
The decreasing costs and increasing speed and accuracy of DNA sample collection, preparation, and sequencing has rapidly produced an enormous volume of genetic data. However, fast and accurate analysis of the samples remains a bottleneck. Here we present D<sup>4</sup>RAGenS, a genetic sequence identification algorithm that exhibits the Big Data handling and(More)
The development of a quantification method for monoclonal antibodies in serum has been accomplished by high-performance liquid chromatography multiple reactions monitoring mass spectrometry. A human monoclonal antibody (HmAb) was used as the model protein for method development and validation. A peptide from the CDR3-region of its heavy chain was selected(More)
Considerable progress has been made in exploiting the enormous amount of genomic and genetic information for the identification of potential targets for drug discovery and development. New tools that incorporate pathway information have been developed for gene expression data mining to reflect differences in pathways in normal and disease states. In(More)
For a forensic identification method to be admissible in international courts, the probability of false match must be quantified. For comparison of individuals against complex mixtures using a panel of single nucleotide polymorphisms (SNPs), the probability of a random man not excluded, P(RMNE) is one admissible standard. While the P(RMNE) of SNP alleles(More)
Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new opportunities to efficiently handle the increasing workload. We propose a new method of fast genetic sequence(More)