Darrell J. Swenson

Learn More
Computational modeling in electrocardiography often requires the examination of cardiac forward and inverse problems in order to non-invasively analyze physiological events that are otherwise inaccessible or unethical to explore. The study of these models can be performed in the open-source SCIRun problem solving environment developed at the Center for(More)
The simulation of electrical activity in the heart, such as normal and abnormal ventricular rhythms and ischemia, utilize computational methods that rely on an underlying geometric model, or polygonal mesh of cardiac tissues and boundaries. Because of the complex shape of many biological structures, it is often difficult to create meshes that conform to the(More)
The electrocardiogram (ECG) is ubiquitously employed as a diagnostic and monitoring tool for patients experiencing cardiac distress and/or disease. It is widely known that changes in heart position resulting from, for example, posture of the patient (sitting, standing, lying) and respiration significantly affect the body-surface potentials; however, few(More)
BACKGROUND Voltage mapping is an important tool for characterizing proarrhythmic electrophysiological substrate, yet it is subject to geometric factors that influence bipolar amplitudes and thus compromise performance. The aim of this study was to characterize the impact of catheter orientation on the ability of bipolar amplitudes to accurately discriminate(More)
Computational simulation has become an indispensable tool in the study of both basic mechanisms and pathophysiology of all forms of cardiac electrical activity. Such simulations depend heavily on geometric models that are either realistic or even patient specific. These models consist of a connected mesh of sometimes millions of polygonal elements that must(More)
Mesh generation for finite element simulation of biomedical domains has emerged as a key open problem to be addressed by the scientific community. Building representative models of organ systems that can provide accurate simulations is a cross-cutting issue requiring domain expertise from both biologists and computational scientists. Often these two groups(More)
  • 1