Learn More
In this paper, we describe the performance of the parallel GROMOS87 code, developed under the ESPRIT EUROPORT–2/PACC project, and indicate its potential impact in industry. An outline of the parallel code structure is given, followed by a discussion of the results of some industrially–relevant testcases. Conclusions are drawn as to the overall success of(More)
This article presents the ALOJA project, an initiative to produce mechanisms for an automated characterization of cost-effectiveness of Hadoop deployments and reports its initial results. ALOJA is the latest phase of a long-term collaborative engagement between BSC and Microsoft which, over the past 6 years has explored a range of different aspects of(More)
This article presents ALOJA-Machine Learning (ALOJA-ML) an extension to the ALOJA project that uses machine learning techniques to interpret Hadoop benchmark performance data and performance tuning; here we detail the approach, efficacy of the model and initial results. The ALOJA-ML project is the latest phase of a long-term collaboration between BSC and(More)
During the past years the exponential growth of data, its generation speed, and its expected consumption rate presents one of the most important challenges in IT both for industry and research. For these reasons, the ALOJA research project was created by BSC and Microsoft as an open initiative to increase cost-efficiency and the general understanding of Big(More)
—This article presents the ALOJA project and its analytics tools, which leverages machine learning to interpret Big Data benchmark performance data and tuning. ALOJA is part of a long-term collaboration between BSC and Microsoft to automate the characterization of cost-effectiveness on Big Data deployments, currently focusing on Hadoop. Hadoop presents a(More)