Darlene A. Burke

Learn More
After spinal cord injury (SCI), the absence of an adequate blood supply to injured tissues has been hypothesized to contribute to the lack of regeneration. In this study, blood vessel changes were examined in 28 adult female Fischer 344 rats at 1, 3, 7, 14, 28, and 60 days after a 12.5 g x cm NYU impactor injury at the T9 vertebral level. Laminin, collagen(More)
The majority of human spinal cord injuries involve gray matter loss from the cervical or lumbar enlargements. However, the deficits that arise from gray matter damage are largely masked by the severe deficits due to associated white matter damage. We have developed a model to examine gray matter-specific deficits and therapeutic strategies that uses(More)
Identification of long tracts responsible for the initiation of spontaneous locomotion is critical for spinal cord injury (SCI) repair strategies. Pathways derived from the mesencephalic locomotor region and pontomedullary medial reticular formation responsible for fictive locomotion in decerebrate preparations project to the thoracolumbar levels of the(More)
STUDY DESIGN A 6 year retrospective study was conducted. OBJECTIVES The populations at risk for spinal cord injury (SCI) in the northwestern Kentucky (KY) and southern Indiana (IN) regions were identified following examination of the causes and factors associated with SCI. SETTING The database included patients primarily from the surrounding KY and IN(More)
The present study investigated neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF), a distant member of the transforming growth factor-beta (TGF-beta) superfamily, following moderate contusive spinal cord injury (SCI) in adult rats. A T11 spinal cord contusion injury was made using an Infinite Horizon impactor (IH; impact force=150(More)
Traumatic human spinal cord injury (SCI) causes devastating and long-term hardships. These are due to the irreparable primary mechanical injury and secondary injury cascade. In particular, oligodendrocyte cell death, white matter axon damage, spared axon demyelination, and the ensuing dysfunction in action potential conduction lead to the initial deficits(More)
Identification of long tracts responsible for spontaneous locomotion is critical for spinal cord injury (SCI) repair strategies. We recently demonstrated that extensive demyelination of adult rat thoracic ventral columns, ventromedial, and ventrolateral white matter produces persistent, significant open-field hindlimb locomotor deficits. Locomotor movements(More)
STUDY DESIGN The effect of intense local hypothermia was evaluated in a precision model of spinal canal narrowing and spinal cord injury in rats. The spinal cord injury was cooled with a custom cooling well used over the epidural surface. Basso, Beattie, and Bresnahan (BBB) motor scores and transcranial magnetic motor-evoked potential (tcMMEP) responses(More)
OBJECT The authors conducted a study to provide an objective electrophysiological assessment of descending motor pathways in rats, which may become a means for predicting outcome in spinal cord injury research. METHODS Transcranial magnetic motor evoked potentials (TMMEPs) were recorded under various conditions in awake, nonanesthetized, restrained rats.(More)
Our understanding of the substrates of locomotion, and hence our understanding of the causes of deficits following spinal cord injury, is still incomplete. While severe locomotor deficits can be induced by either contusion or laceration injuries or demyelination of thoracic spinal cord ventral and ventrolateral white matter, loss of mid-thoracic gray matter(More)