Dariusz Latowski

Learn More
The violaxanthin cycle describes the reversible conversion of violaxanthin to zeaxanthin via the intermediate antheraxanthin. This light-dependent xanthophyll conversion is essential for the adaptation of plants and algae to different light conditions and allows a reversible switch of photosynthetic light-harvesting complexes between a light-harvesting(More)
In this study, we have examined the influence of different lipids on the solubility of the xanthophyll cycle pigments diadinoxanthin (Ddx) and violaxanthin (Vx) and on the efficiency of Ddx and Vx de-epoxidation by the enzymes Vx de-epoxidase (VDE) from wheat and Ddx de-epoxidase (DDE) from the diatom Cyclotella meneghiniana, respectively. Our results show(More)
This paper describes violaxanthin de-epoxidation in model lipid bilayers. Unilamellar egg yolk phosphatidylcholine (PtdCho) vesicles supplemented with monogalactosyldiacylglycerol were found to be a suitable system for studying this reaction. Such a system resembles more the native thylakoid membrane and offers better possibilities for studying kinetics and(More)
Lipocalins are a widely distributed group of proteins whose common feature is the presence of six-or eight-stranded beta-barrel in their tertiary structure and highly conservative motifs short conserved region, (SCR) in their amino acid sequences. The presence of three SCRs is typical for kernel lipocalins, while outlier lipocalins have only one or two such(More)
The light-dependent, cyclic changes of xanthophyll pigments: violaxanthin, antheraxanthin and zeaxanthin, called the xanthophyll cycle, have been known for about fifty years. This process was characterised for higher plants, several fern and moss species and in some algal groups. Two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE),(More)
In the present study the influence of the lipid environment on the organization of the main light-harvesting complex of photosystem II (LHCII) was investigated by 77K fluorescence spectroscopy. Measurements were carried out with a lipid-depleted and highly aggregated LHCII which was supplemented with the different thylakoid membrane lipids. The results show(More)
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid(More)
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the(More)
Carotenoids, apart of their antenna function in photosynthesis, play an important role in the mechanisms protecting the photosynthetic apparatus against various harmful environmental factors. They protect plants against overexcitation in strong light and dissipate the excess of absorbed energy, they scavenge reactive oxygen species formed during(More)
Bilayer-forming lipids were shown to be ineffective in sustaining the enzymatic activity of violaxanthin de-epoxidase. On the other hand, non-bilayer-forming lipids, regardless of their different chemical character, ensured high activity of violaxanthin de-epoxidase, resulting in conversion of violaxanthin to zeaxanthin. Our data indicates that the presence(More)