Dariusz Kaczorowski

  • Citations Per Year
Learn More
We present electronic transport and magnetic properties of single crystals of semimetallic half-Heusler phase LuPdBi, having theoretically predicted band inversion requisite for nontrivial topological properties. The compound exhibits superconductivity below a critical temperature Tc = 1.8 K, with a zero-temperature upper critical field Bc2 ≈ 2.3 T.(More)
The compounds UCuOP and NpCuOP have been synthesized and their crystal structures were determined from low-temperature single-crystal X-ray data. These isostructural compounds crystallize with two formula units in space group P4/nmm of the tetragonal system. Each An atom (An = U or Np) is coordinated to four O and four P atoms in a distorted square(More)
Topological semimetals are systems in which conduction and valence bands cross each other and the crossings are protected by topological constraints. These materials provide intriguing tests for fundamental theories, while their unique physical properties promise a wide range of possible applications in low-power spintronics, optoelectronics, quantum(More)
When a second-order magnetic phase transition is tuned to zero temperature by a nonthermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these "quantum critical" superconductors it has been widely reported that the normal-state properties above the superconducting transition(More)
We used magnetic susceptibility, resistivity and heat capacity measurements to characterize the superconducting state in the Einstein solid VAl(10.1). We find that VAl(10.1) is a weak-coupling, type-II superconductor with T(c) = 1.53 K and an upper critical field of H(c2)(0) = 800 Oe. The heat capacity data in the range 0.07 K < T < 1.53 K are consistent(More)
Tm(3)Cu(4)Ge(4) crystallizes in the orthorhombic Gd(3)Cu(4)Ge(4)-type crystal structure (space group Immm) whereas Tm(3)Cu(4)Sn(4) crystallizes in a distorted variant of this structure (monoclinic space group C2/m). The compounds were studied by means of neutron diffraction, specific heat, electrical resistivity and magnetic measurements. Analysis of(More)
Single crystals of the cerium intermetallic compound CeIr(2)Zn(20) were grown by the flux method, and studied by means of x-ray diffraction, magnetic, electrical transport, and thermodynamic measurements. The compound crystallizes with the cubic CeCr(2)Al(20)-type crystal structure, in which the Ce and transition metal atoms are located inside cages formed(More)
Millimetre size UZn(12) single crystals were grown by the high temperature solution growth method using zinc as the solvent. Single-crystal x-ray diffraction data confirm that this compound crystallizes in the hexagonal high temperature form of SmZn(12) (S.G. P6/mmm) and points to a U(1.01(1))Zn(11.7(1)) stoichiometry for the crystals, with ∼ 4% of the U(More)
Superconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity(More)
Metamagnetic transitions in CePd5Ge3 were investigated by means of low-temperature magnetization, magnetic susceptibility, electrical resistivity and magnetoresistivity measurements. In transverse magnetic fields applied in a direction close to the b-axis the antiferromagnetic structure of the compound undergoes two successive transitions, first to a(More)