Darius A. Schneider

Learn More
The pattern recognition receptor, RAGE (receptor for advanced glycation endproducts), propagates cellular dysfunction in several inflammatory disorders and diabetes. Here we show that RAGE functions as an endothelial adhesion receptor promoting leukocyte recruitment. In an animal model of thioglycollate-induced acute peritonitis, leukocyte recruitment was(More)
BACKGROUND Blood flow is impaired in islet transplants, but there is conflicting evidence on improving the outcome by promoting vascularization. We previously reported that islet endothelial cells (EC) possess significant angiogenic capacity. METHODS To further address this issue, we studied human islets in culture under hypoxic conditions. Moreover, we(More)
One of the major obstacles in transplanting avascular tissue or metabolically active cells for ischemic diseases is the loss of transplanted cells due to lack of oxygen and nutrients in the early posttransplantation period. Biodegradable polymeric tissue engineering scaffolds and hydrogels have a potential to incorporate cells or cellular organoids such as(More)
The pattern recognition receptor, RAGE (receptor for advanced glycation endproducts), propagates cellular dysfunction in several inflammatory disorders and diabetes. Here we show that RAGE functions as an endothelial adhesion receptor promoting leukocyte recruitment. In an animal model of thioglycollate-induced acute peritonitis, leukocyte recruitment was(More)
Hematogenous dissemination of melanoma is a life-threatening complication of this malignant tumor. Here, we identified junctional adhesion molecule-C (JAM-C) as a novel player in melanoma metastasis to the lung. JAM-C expression was identified in human and murine melanoma cell lines, in human malignant melanoma, as well as in metastatic melanoma including(More)
Multiple sclerosis (MS) is a devastating inflammatory disorder of the central nervous system (CNS). A major hallmark of MS is the infiltration of T cells reactive against myelin components. T cell infiltration is mediated by the interaction of integrins of the beta1 and beta2 family expressed by lymphocytes with their endothelial counter-receptors, vascular(More)
In type 1 diabetes (T1D) the immune system attacks insulin-producing pancreatic β-cells. Unfortunately, our ability to curb this pathogenic autoimmune response in a disease- and organ-specific manner is still very limited due to the inchoate understanding of the exact nature and the kinetics of the immunological pathomechanisms that lead to T1D. None of the(More)
In type 1 diabetes, as a result of as yet unknown triggering events, auto-aggressive CD8+ T cells, together with a significant number of other inflammatory cells, including CD8+ T lymphocytes with unknown specificity, infiltrate the pancreas, leading to insulitis and destruction of the insulin-producing beta cells. Type 1 diabetes is a multifactorial(More)
Type 1 diabetes (T1D) results from the specific immune-mediated destruction of the insulin-producing β-cells of the pancreas. In genetically susceptible individuals, a still undetermined initiating 'hit' triggers a cascade of events that eventually leads to autoreactive CD8 T cells infiltrating the pancreatic islets and, subsequently, destroying them. There(More)