Learn More
Pedestrian detection is a rapidly evolving area in computer vision with key applications in intelligent vehicles, surveillance, and advanced robotics. The objective of this paper is to provide an overview of the current state of the art from both methodological and experimental perspectives. The first part of the paper consists of a survey. We cover the(More)
This paper presents a multi-cue vision system for the real-time detection and tracking of pedestrians from a moving vehicle. The detection component involves a cascade of modules, each utilizing complementary visual criteria to successively narrow down the image search space, balancing robustness and efficiency considerations. Novel is the tight integration(More)
Detecting people in images is key for several important application domains in computer vision. This paper presents an in-depth experimental study on pedestrian classification; multiple feature-classifier combinations are examined with respect to their ROC performance and efficiency. We investigate global versus local and adaptive versus nonadaptive(More)
The ability to recognize humans and their activities by vision is key for a machine to interact intelligently and effortlessly with a human-inhabited environment. Because of many potentially important applications, " looking at people " is currently one of the most active application domains in computer vision. This survey identifies a number of promising(More)
This paper presents a novel probabilistic approach to hierarchical, exemplar-based shape matching. No feature correspondence is needed among exemplars, just a suitable pairwise similarity measure. The approach uses a template tree to efficiently represent and match the variety of shape exemplars. The tree is generated offline by a bottom-up clustering(More)
This paper presents a novel mixture-of-experts framework for pedestrian classification with partial occlusion handling. The framework involves a set of component-based expert classifiers trained on features derived from intensity, depth and motion. To handle partial occlusion, we compute expert weights that are related to the degree of visibility of the(More)
This paper presents a Bayesian framework for multi-cue 3D object tracking of deformable objects. The proposed spatio-temporal object representation involves a set of distinct linear subspace models or Dynamic Point Distribution Models (DPDMs), which can deal with both continuous and discontinuous appearance changes; the representation is learned fully(More)
This paper presents a novel approach to pedestrian classification which involves utilizing the synthesized virtual samples of a learned generative model to enhance the classification performance of a discriminative model. Our gen-erative model captures prior knowledge about the pedestrian class in terms of a number of probabilistic shape and texture models,(More)
—Future vehicle systems for active pedestrian safety will not only require a high recognition performance but also an accurate analysis of the developing traffic situation. In this paper, we present a study on pedestrian path prediction and action classification at short subsecond time intervals. We consider four representative approaches: two novel(More)