Learn More
Plant DNA barcoding currently relies on the application of a two-locus combination, matK + rbcL. Despite the universality of these two gene regions across plants, it is suspected that this combination might not have sufficient variation to discriminate closely related species. In this study, we tested the performance of this two-locus plant barcode along(More)
Single-nucleotide polymorphisms (SNPs) are rapidly becoming the standard markers in population genomics studies; however, their use in nonmodel organisms is limited due to the lack of cost-effective approaches to uncover genome-wide variation, and the large number of individuals needed in the screening process to reduce ascertainment bias. To discover SNPs(More)
The introduction and establishment of non-native plant pathogens into new areas can result in severe outbreaks. Septoria leaf spot and canker caused by Sphaerulina musiva is one of the most damaging poplar diseases in northeastern and north-central North America. Stem and branch cankers can be devastating on susceptible trees, leading to tree death and(More)
In the generally bee-pollinated genus Lotus a group of four species have evolved bird-pollinated flowers. The floral changes in these species include altered petal orientation, shape and texture. In Lotus these characters are associated with dorsiventral petal identity, suggesting that shifts in the expression of dorsal identity genes may be involved in the(More)
We developed and characterized microsatellite markers for the genus Lotus, a large genus of leguminous plants containing many endemic species of conservation interest. The marker system was then used to survey patterns of population genetic variation of Lotus sessilifolius, a Canary Island endemic occurring on four islands (La Palma, El Hierro, La Gomera(More)
Preventing the introduction and establishment of forest invasive alien species (FIAS) such as the Asian gypsy moth (AGM) is a high-priority goal for countries with extensive forest resources such as Canada. The name AGM designates a group of closely related Lymantria species (Lepidoptera: Erebidae: Lymantriinae) comprising two L. dispar subspecies (L.(More)
Pollinator shifts are considered to drive floral trait evolution, yet little is still known about the modifications of petal epidermal surface at a biogeographic region scale. Here we investigated how independent shifts from insects to passerine birds in the Macaronesian Islands consistently modified this floral trait (i.e. absence of papillate cells).(More)
  • 1