Learn More
This brief review examines some of the methods used to infer central control strategies from surface electromyogram (EMG) recordings. Among the many uses of the surface EMG in studying the neural control of movement, the review critically evaluates only some of the applications. The focus is on the relations between global features of the surface EMG and(More)
The review focuses on the methods currently available for estimating muscle fibre conduction velocity (CV) from surface electromyographic (EMG) signals. The basic concepts behind the issue of estimating CV from EMG signals are discussed. As the action potentials detected at the skin surface along the muscle fibres are, in practice, not equal in shape, the(More)
In cat medial gastrocnemius (MG), fibres supplied by individual motoneurones (muscle units) distribute extensively along the muscle longitudinal axis. In the human MG, the size of motor unit territory is unknown. It is uncertain if the absolute size of muscle unit territory or the size relative to the whole muscle is most comparable with the cat. By(More)
We propose a new electromyogram generation and detection model. The volume conductor is described as a nonhomogeneous (layered) and anisotropic medium constituted by muscle, fat and skin tissues. The surface potential detected in space domain is obtained from the application of a two-dimensional spatial filter to the input current density source. The(More)
The aim of the study was to confirm the hypothesis that the longer a contraction is sustained, the larger are the changes in the spatial distribution of muscle activity. For this purpose, surface electromyographic (EMG) signals were recorded with a 13 x 5 grid of electrodes from the upper trapezius muscle of 11 healthy male subjects during static(More)
This study presents a novel method for associating features of the surface electromyogram (EMG) recorded from one upper limb to the force produced by the contralateral limb. Bilateral-mirrored contractions from ten able-bodied subjects were recorded along with isometric forces in multiple degrees of freedom (DOF) from the right wrist. An artificial neural(More)
This study investigated the modular control of complex locomotor tasks that require fast changes in direction, i.e., cutting manoeuvres. It was hypothesized that such tasks are accomplished by an impulsive (burst-like) activation of a few motor modules, as observed during walking and running. It was further hypothesized that the performance in cutting(More)
Many previous studies were focused on the influence of anatomical, physical, and detection-system parameters on recorded surface EMG signals. Most of them were conducted by simulations. Previous EMG models have been limited by simplifications which did not allow simulation of several aspects of the EMG generation and detection systems. We recently proposed(More)
The study proposes a method for supervised classification of multi-channel surface electromyographic signals with the aim of controlling myoelectric prostheses. The representation space is based on the discrete wavelet transform (DWT) of each recorded EMG signal using unconstrained parameterization of the mother wavelet. The classification is performed with(More)
In this paper, we propose techniques of surface electromyographic (EMG) signal detection and processing for the assessment of muscle fiber conduction velocity (CV) during dynamic contractions involving fast movements. The main objectives of the study are: 1) to present multielectrode EMG detection systems specifically designed for dynamic conditions (in(More)