Learn More
This brief review examines some of the methods used to infer central control strategies from surface electromyogram (EMG) recordings. Among the many uses of the surface EMG in studying the neural control of movement, the review critically evaluates only some of the applications. The focus is on the relations between global features of the surface EMG and(More)
The aim of the study was to confirm the hypothesis that the longer a contraction is sustained, the larger are the changes in the spatial distribution of muscle activity. For this purpose, surface electromyographic (EMG) signals were recorded with a 13 x 5 grid of electrodes from the upper trapezius muscle of 11 healthy male subjects during static(More)
We propose a new electromyogram generation and detection model. The volume conductor is described as a nonhomogeneous (layered) and anisotropic medium constituted by muscle, fat and skin tissues. The surface potential detected in space domain is obtained from the application of a two-dimensional spatial filter to the input current density source. The(More)
In cat medial gastrocnemius (MG), fibres supplied by individual motoneurones (muscle units) distribute extensively along the muscle longitudinal axis. In the human MG, the size of motor unit territory is unknown. It is uncertain if the absolute size of muscle unit territory or the size relative to the whole muscle is most comparable with the cat. By(More)
The purpose of this study was to investigate changes in the surface electromyographic (EMG) signal as a means of defining age-related central and peripheral mechanisms affecting muscle fatigue. Spectral and temporal variables of the surface EMG signal were studied during voluntary isometric contractions of the dominant biceps brachii muscle in a group of 8(More)
Surface electromyography for noninvasive characterization of muscle. Exerc. Sport Sci. Rev., Vol. 29, No. 1, pp 20-25, 2001. Linear electrode arrays are used for noninvasive muscle characterization to study individual motor unit properties and the myoelectric manifestations of muscle fatigue during sustained contractions. The location of an electrode pair(More)
We describe a new method for the estimation of muscle fiber conduction velocity (CV) from surface electromyography (EMG) signals. The method is based on the detection of two surface EMG signals with different spatial filters and on the compensation of the spatial filtering operations by two temporal filters (with CV as unknown parameter) applied to the(More)
This study investigated the modular control of complex locomotor tasks that require fast changes in direction, i.e., cutting manoeuvres. It was hypothesized that such tasks are accomplished by an impulsive (burst-like) activation of a few motor modules, as observed during walking and running. It was further hypothesized that the performance in cutting(More)
Amplitude and frequency content of the surface electromyographic (EMG) signal reflect central and peripheral modifications of the neuromuscular system. Classic surface EMG spectral variables applied to assess muscle functions are the centroid and median power spectral frequencies. More recently, nonlinear tools have been introduced to analyze the surface(More)
The objectives of this work were to determine optimal surface electromyogram (EMG) electrode locations, and inter-electrode distance (IED), when assessing activity and fatigue in the human upper trapezius muscle. Surface EMG signals were recorded from the upper trapezius muscle of 11 healthy male subjects using a linear array of 16 surface electrodes. Five(More)